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Abstract : Trie hashing is one of the  fastest methods for accessing data on the disk.  As  long as the trie 

is in  core, any key search takes at most one disk access.  The trie size depends linearly on the  file  size 

and  on the representation chosen for the trie. The representation   considered   until  now   was called  

standard representation. We propose  two representations  that are about two times  more compact.  The  

same buffer in  core, suffice then for  about  two  times  larger  file.   The  price  is  that  the algorithmic is 

more complex and needs more processing time. 
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1.  Introduction 

Trie hashing is a new access method proposed in /LIT 81/. The method allows to constitute dynamic 

ordered files of records identified with a primary key. As for the related others methods, the load factor is 

on the average 70% for random insertions. It's about  60-70% for sorted insertions /LIT 85/. A key search 

is performed in one disk access at most, even for files attaining millions of records. These properties place 

the method among the fastest access ones. 

 

The trie can be represented in the memory in several ways. The basic representation in /LIT 81/, called 

standard representation, needs about six bytes/node. In this representation, any bucket needs at least one 

node. It is shown in /LIT 81/ that a file of 100 000 buckets needs then about 10K buffer for its trie. For 

large files, trie size needed may become prohibitive for some applications. 

 

The idea explored in this paper is to increment the ratio of file size to trie size by using more compact trie 

representations. We called the proposed representations LL-TB and TB-LR sequential representations. 

We will show that with these representations, we can double the file for the same size of the memory 

allocated for the trie. The counterpart, this involves a more complicated  algorithmic. In addition, the 

computing time will be higher. Nevertheless, the trade-of should be interesting for many applications. 

 

Section 2 recalls the basic principles  of /LIT 81/. Section 3 and 4 introduce the representations. Sections 5 

and 6 present briefly the corresponding search, splitting and sequential search algorithms. Section 7 

discusses performance. Section 8 gives a possible implementation. In section 9, comparisons with others 

methods are made. Section 10 concludes the paper. 

 

2.  Basic  principles 

 

Trie hashing uses a dynamic hashing function that is represented by a trie. The function maps the key 

values on the bucket addresses. Initia lly, i .e before the first collision, all keys are mapped to the address 

zero. Then, when collisions occur, the key values extend linearly. Collisions are resolved by splitting. Each 

split extends the file by one bucket. The trie consists of two kinds of nodes: internal and external nodes. 

Each split creates one external and one internal node, at least. The trie may be represented in storage in 

several manners. Two types of such representations were called respectively standard and sequential 

representation /LIT 81/. 



 

In the standard representation the trie is represented as a binary tree. To each internal node correspond 

two fields : a value field and a pointer field. Value field is a pair (DV,DN) where DV is a digit value and 

DN is a digit number. Pointer field is a pair (LP,UP) where LP and UP are pointers either to internal or 

external nodes. Buckets are designated by external nodes. A negative pointer indicates a pointer to an 

internal node. The trie is extended almost linearly, i. e, at each split, at least, one node is added at the end 

of the file. A split may end more than one node, but this event is rare /LIT 85/. Fig(1) shows the graph G 

of the trie after insertions of 31 keys. The search and splitting algorithms corresponding to this 

representation are in /LIT 81/. 

 

The principle of a  sequential representation of a graph is that nodes are in some predefined order. We 

then save the space needed by the pointers. This renders the sequential representations more compact than 

standard ones. In contrast, the algorithmic has to be more complex as it involves shifting of nodes so that to 

preserve the predefined order. 

 

In /LIT 85/, two sequential representations  were mentioned: 

(i) -the nodes correspond to the leaves of the graph G visited in  ascendant (left-to-right) order, 

(ii)-The nodes correspond first to all nodes of level 1 in ascendant order of digits; then, in the same order, 

all nodes of level 2. And so on.. 

 

More details may be found in /LIT 81/. 

 

Below, we consider that the file is a collection of buckets numbered from 0 to N. Each bucket has a 

capacity b. 

Each key is of the form     C = d0d1...dl 

where di is a digit of a given alphabet. i is the digit level. In what follows, the alphabet is the usual one. The 

maximal digit value will be denoted ':'. The symbol '_' denote one space. We will also suppose that the 

method principles of trie hashing defined in /LIT 81/ or /LIT 85/ are known. We will be interested mainly in 

the manner in which the trie is constructed. So, we will designate by C' the middle key of the sequence of 

the b+1 keys and by C'' the greatest one. We will also assume that the sequence chosen for the split is 

c'0c'1...c'k  and I is the number of digits that already exist in the trie. The variable m denotes the address 

of the bucket undergoing the split and the variable M the next bucket to allocate for the file. 



 

3. New graph 

 

In our study, we consider the hashing function as a m-ary trie. Fig(2) shows the new graph G' representing 

the trie for the example file. In what follows, we give the correspondence between the binary and m-ary 

tries.  Let us recall that at each collision, one determines the shortest sequence of digits which permits to 

split the b+1 keys. At a given time, let S be the sequel of the all sequences. A digit di is told logical 

descendant of dk of order h if there exist a sequence in S containing both di and dk such as i=k+h. 

 

The new graph G' we have considered is a m-ary trie. It contains as much nodes as internal nodes in the 

graph G representing the binary trie. In the graph G', a level consists of all the internal nodes having the 

same number digit. In a level, the nodes are divided in classes so-called sublevels. The digits of nodes of a 

sublevel in the level i are  the logical descendants of order 1 of a digit of a node in the level i-1. Then, at the 

level 0, there is only one sublevel, and usually, there are many sublevels by level. Furthermore, within the 

sublevels, the digits are in ascendant order.  

Each node consists of two fields: a node digit and a node pointer. Node digits concatenation of each path 

from root node to a given node represents the maximal key of a bucket. If we choose LP as node pointer, 

the maximal key corresponds to the bucket pointed by the node pointer of the same node (case of  Fig 2a). 

if we choose UP as node pointer of a node, the maximal key corresponds to the bucket addressed by the 

node pointer of the next node with respect to the traversal in postorder (case of Fig 2b ). 

  

Note the interesting property that if we list the node pointer of the m-ary trie in postorder (i.e, for each 

node n of the trie we apply the rule T1T2...TK n) /KNU 73/,then the bucket addresses stored at these 

node pointers are listed in sorted order. 

 

We can extend the graph G' by external nodes. We obtain thus an extended graph so-called below G'e. 

Fig3 gives the extended graphs corresponding to the graphs of fig2. In this graph, there are two sorts of 

nodes. The internal nodes are digits and the external ones are pointers to the buckets. 

 

In the next section, we present the sequential representations we can define in the graphs G' and G'e. 

 

4. Sequential representations  



 

The sequential representations we will analyze correspond then, on the one hand, to the traversal of the 

new graph G' in the following orders: 

  (i) -  Left to right in a level, then from top to bottom. 

  (ii)-  From top to bottom, then left to right. 

and, on the other hand, to the traversal of the graph G'e in the order (ii). 

 

We called the representation corresponding to (i) the LL-TB sequential representation because the nodes 

are represented as follows:   The nodes of the level 0 left to right, then the nodes of the level 1   in the 

same order; and so forth... 

We called the representation corresponding to (ii) the TB-LR sequential representation because the nodes 

are represented as follows:   The nodes of the most left path from top to bottom, then those of   the path 

immediately to the right; and so forth... 

To distinguish the two representations corresponding to (ii), we will call the one defined in G'e the TB-LR' 

sequential representation.  

 

In the graph G', a node may be represented as a 3-uplet with the fields DV, UP  and B. DV is the digit 

value, UP is the upper pointer and B is the leaf bit equal to 0 if the internal node is a leaf and 1 otherwise. 

In this graph, for the level 0 and for each sublevel we also consider a counter of the number of nodes. 

 

With these considerations, if we represent the counter between < > and if we take UP as node pointer of a 

node (fig2a), then the LL-TB sequentia l representation of the graph G' will be : 

  (I) : <7> (a,4,1) (b,10,0) (f,7,0) (h,6,1) (i,2,1) (o,1,0) (t,5,0) <1> (r,9,0) <1> (e,8,0) <1> (_,3,0) 

 

the TB-LR sequential representation of the graph G' will be 

  (II)  :  <7> (a,4,1) <1> (r,9,0) (b,10,0) (f,7,0) (h,6,1) <1> (e,8,0) (i,2,0) <1> (_,3,0) (o,1,0) (t,5,0) 

 

In the graph G'e, there are two sorts of nodes. If we represent the external node between < > and if we 

take LP as node pointer of a node (fig3b), then the TB-LR' sequential representation could be: 

 

  (III) : a r <0> <9> b <4> f <10> h e <7> <8> i _ <6> <3> o <2> t <1> <5> 

 



We shall see, latter on, how the distinction between an internal and an external node could be done. 

 

Below, we analyze the algorithmic corresponding to the two types of representation. I. e, one 

representation defined in the graph G' and one defined in the graph G'e. Thus, we make this, in detail, only 

for the LL-TB and TB-LR' sequential representation ( (I) and (III) ). Indeed, we shall see, latter on, that 

the algorithmic of the TB-LR sequential representation  is similar to the TB-LR' one. 

 

5. The LL-TB sequential representation: 

 

5.1 The principle  

 

This representation is the one defined in /LIT 85/. An internal node is a 3-uplet with the fields DV , UP and 

B. DV is the digit value, UP is the upper pointer and B is the leaf bit equal to 0 if the internal node is a leaf 

and 1 otherwise. We represent neither the level of node nor the pointer to other internal nodes. The level of 

digit is the level of node  in the m-ary trie. Furthermore, as the order of nodes is predefined, we do not 

need pointers. 

 

 

5.2 Insertion 

 

We first search the bucket that should contain the key to insert. If the key is not in it and if the bucket is 

full, then a collision occurs. It will be processed as follows: 

Let us consider the shortest sequence c'0c'1...c'k selected for the split. We first retrieve the first I digits 

which already exist in the trie. Let Node' be the last node (with the digit c'i-1) visited at the level i-1. Then, 

we insert (K-I+1) digits, each one of them in the corresponding level. If a single digit is selected by the 

split, i. e, no nil nodes, one inserts either the node (c'k,M,0) into a sublevel or a sublevel with this node in 

the level k according to the value of the leaf bit of the last visited node in level i-1 (1 or 0). For the insertion 

of the nil nodes, if any, we consider two cases: 

 

  -Insertion of the first nil node : 

 



The leaf bit of the last visited node in level i-1 is either 1 or 0. For the first case, the sublevel of level i 

exists. We insert then the nil node in this sublevel and we bring up-to-date the leaf bit of the node Node'. 

For the second case, we create a sublevel with the nil node in level i.  

 

  -Insertion of the others nil nodes: 

We create sublevels in the level i+1, i+2, . . .   k-1     successively. Every time we create a node in a 

sublevel, we increase the counter of the number of nodes. 

 

Suppose we want to insert the key 'help' in Fig2a. A collision will occur in bucket 7. The shortest sequence 

selected for the split is 'he_'. The sequence 'he' exists already in the trie. We create a node with the 

following values: 

 

   DV='_'  ; UP=11  ; B=0 

 

at level 2. Since the latter does not exist, we create then a sublevel consisting of this node. Further, we 

associate to it a counter with the value 1. Note that the node's leaf bit with digit value 'i' at level 1 is set to 

1. 

We obtain then 

 

   <7> (a,4,1) (b,10,0) (f,7,0) (h,6,1) (i,2,1) (o,1,0) (t,5,0) <1> (r,9,0) <1> (e,8,1) <1> (_,3,0) <1> (_,11,0) 

 

5.3 Key search 

 

key search is performed as follows: let C=c1c2.. be the searched key. We search at level 0 a node with a 

digit d0 such as C <= d0:::::::. If this node does not exist then the field  UP of the last visited node gives the 

bucket which should contain the key C. Otherwise we analyze the two following cases: 

 

 - the node is a leaf and we stop the search. The field UP of the preceding node holds the address of the 

bucket which should contain the key C. 

 

 - the node is not a leaf. We process its sons which are obviously at level 1. Likewise, either we find a 

node with digit d1 such as C<=d0d1::::::: or not. We treat this node  as previously. And so on... 



 

5.4  Sequential search 

 

As we have outlined it above, the traversal of the graph G' in postorder gives the sorted sequence of 

buckets. In our example file , if we traverse the graph G' of Fig2a (or Fig2b) in that order, we obtain the 

following sorted sequence of buckets: 

 

    0, 9, 4, 10, 7, 8, 6, 3, 2, 1, 5 

 

As nodes are represented in a predefined order, for each node Node belonging to level i, we must compute 

the address of the next level i+1, its number of sublevels and the number of the sublevel that contains the 

sons of the node Node. This allows us to use a recursive call. 

 

6.  The TB-LR sequential representation 

 

6.1 The principle  

 

In this representation, the trie is a  sequel of external and internal nodes. An internal node is a digit; an 

external node is a pointer to a bucket. The internal nodes are stored by paths. We represent first the 

internal nodes of the most left path, from top to bottom. Then those of the path immediately to the right in 

the same order, and so forth. the external nodes follow the internal ones associated with a path. As we 

represent the internal nodes from top to bottom in a path, their level is shown implicitly in the path. So, in 

the path b0b1....bn, i is the level of digit b. Further, the digits (or internal nodes) are such that b0 < b1  .....< 

bn. Usually, there are common nodes to many paths. In this manner, they are not duplicated. 

 

6.2  Insertion 

 

As described previously, at each new collision, we make the following operations : Let m be the bucket 

undergoing the split, M the next bucket to allocate, K and I corresponding the usual parameters. We first 

search the path of the trie containing the first I digits. Let c'0c'1...c'i be this path. Then, we insert the 

sequence c'i+1 c'i+2....c'k such as c'i+1 would be a son of c'i, c'i+2 a son of c'i+1, and so forth. To respect 

the order of nodes at each level, the son must be inserted at its appropriate position among this brothers. 



Then, we replace the old bucket m by M. Finally, we generate (K-I-1) nil nodes. On the average, an 

internal node and an external one are created  by collision. 

 

As seen previously, if we want to insert the key 'help' in the case of Fig3a, a collision occurs in bucket 7. 

The sequence chosen for the split is 'he_'. The internal nodes 'h' and 'e' already exist in the trie. Node '_' 

becomes a son of node 'e'. We associate to node '_' an external node with value 11. The path is then 

extended by nodes '_' and 11. We obtain the following representation: 

 

   a r <0> <9> b <4> f <10> h e _ <11> <7> <8> i _ <6> <3> o <2> t <1> <5> 

 

6.3  Key search 

 

Key search is performed as follows: we start by the most left path. Then we go over all the internal nodes, 

i.e, until an external node is encountered. The maximal key of this bucket is thus d1d2...dn::..: where d1, d2, 

...dn are the nodes of the path. Either the searched key C is less or equal than this maximal key and the 

concerned bucket is found, or the encountered bucket is not the right one. In the last case, we take the 

following external node and the maximal key becomes        d1d2...dn-1::..:. Then, we repeat the same 

steps. If there are no external node and the concerned bucket is not found, we go to the path immediately 

to right, and so forth. The traversal is stopped when the bucket is found. 

 

6.4  Sequential search 

 

Sequential search is performed easily. It consist of reading the pointers in order in the linear representation. 

Although in the TB-LR sequential representation there is only one type of node, the corresponding 

algorithmic is similar to the one defined in the TB-LR' sequential representation, except that the sequential 

search algorithm needs, in addition, a stack.  

 

7. Analysis. 

 

We will study in this section the memory space and the necessary computing time of key-address 

transformation's algorithm for the two sequential representations seen above. In addition, we recall this for 

the standard representation for comparison purposes.  



 

Let -x be the number of records in the file. 

    -b be the capacity of a bucket 

    -f be the load factor 

 

f is x/(n.b), n being the number of buckets of the file  

 

We will take b=100 and f=0.7. 

The ratio x/f.b represents also the number of buckets in the file. Indeed, we have x/(f.b) = x/((x/(n.b).b) = 

n. 

At each split: 

 -the file is extended by one bucket. 

    -the trie is extended on the average by one internal node for the standard representation and for the 

sequential representations defined in the  graph G' (LL-TB and TB-LR) and by one internal node and  one 

external node for the one defined in the graph G'e (TB-LR'). 

 

The size and the structure of the node depend on the chosen representation. We designate by M'' the 

number of bytes needed for a given representation. For every representation, we will set in the following 

cases of digits: character, numerical and binary. Then, we will observe the space needed by the tries 

corresponding to various representations for 35 000, 140 000, 800 000 and two millions of records. a will 

designate the number of nil nodes. The field address at a level with nodes takes two bytes, which allows to 

address a file of 32K buckets. 

 

7.1 standard representation 

 

The trie is a linked list of internal nodes. An internal node is a 4-uplet (LP,UP,DV,DN). 

 -If the digits are alphabetic, we may choose 1 byte for DV and 1 byte for DN. A node is then represented 

using 6 bytes. 

  We then have : 

   M" = 6 (M + a) 

 -4 bits per DV are sufficient for numerical digits. Usually, the   numerical   key does not exceed 16 digits. 

Thus, 4 others  bits suffice  for DN. It results : 



   M" = 5 (M + a) 

 -If the digits are bits, the field DV is not necessary since we always have DV=0. Likewise, 4 bits suffice 

to indicate the number of digits. Therefore : 

   M" = 4,5 (M + a) 

 

The time corresponding to the key-address transformation is LOG2(M'+a). 

 

7.2  The LL-TB sequential representation 

 

The trie is a collection of M-ary vectors of variable length, where each vector is associated to one sublevel 

(or level 0). An item of a vector is a 3-uplet (DV,UP,B). Let L be the length in bytes of such a node. 

There is a counter NC in each sublevel which gives the number of nodes. We may choose 1 byte for NC, 

which allows us to have 256 nodes per vector. Further, for every collision : 

 

 (i)- either we insert a node at a sublevel in which case the  trie is extended by L bytes, 

 (ii)-or we insert a sublevel at a level in which case the trie is extended by (L+1) bytes. 

 

We can suppose that when the number of keys to insert increases, the insertions of sublevels become 

rare(to confirm possibly by simulation). 

We then have : 

   M" = L (M' + a) + s 

s, being the number of insertions of sublevels. 

Indeed, if n is the number of nodes inserted at level i,  we have 

   M" = Ln + (L + 1)s 

or M" = LM' + s 

and with respect to nil nodes 

   M" = L (M'+a) + s 

We also can write 

   M" = (L+h) (M'+a) with   0<h<1. 

 -for the alphabetic digits we have : 

   M" = (3 + h) (M' + a) 

 -for the numerical digits we have : 



   M" = (2,5 + h) (M' + a) 

 -For the binary digits we have : 

   M" = (2 + h) (M' + a) 

 

The nodes are visited sequentially, level by level, until the searched key is found. At a level , 

 (a)  -we consult the fields DV, UP and B of a node belonging to  a  single level. 

 (aa) -we only consult the field B of nodes of all the others sublevels. 

The number of visited nodes is of the order of N/2. However, on the average, if we consider time spending 

in (aa) negligible compared to the one in (a), it would be LOGb(M'+a), b being the number of sublevels by 

level. 

 



7.3  The TB-LR sequential representation 

 

The trie is a sequel of internal and external nodes. The internal nodes are digits and the external ones are 

pointers to  the buckets. At each collision the trie is extended by one internal node and one external node. 

Thus, with the above considerations: 

 - for the alphabetic digits we have : 

   M" = 3 (M' + a) 

 - for the numerical digits we have : 

   M" = 2,5 (M' + a) 

 - for the binary digits we have : 

   M" = 2 (M' + a) 

 

The search is made path by path. On the average, half of the paths is traversed before finding the right 

bucket. The number of visited nodes is thus of the order of N/2, N being the number of both internal and 

external nodes. Fig 4 gives some examples.  

 

To sum up, the sequential representation defined in the graph G'e (TB-LR') is the most compact. But the 

difference with the ones defined  in the graph G' (LL-TB and TB-LR) is not very important. On the other 

hand, The algorithmic corresponding to the sequential representations by path (TB-LR and TB-LR') is less 

complex than the one corresponding to the representation by level (LL-TB). As for the time of calculation 

of an address, it is the same for the TB-LR and TB-LR' sequential representations, i. e, of the order of 

N/2. However, as we have outlined it above, it could be much faster in the LL-TB sequential 

representation. 

 

8. Implementation 

 

If the standard representation does not set problems for its implementation in a language such as 

PASCAL, FORTRAN, BASIC, the sequential representation could set serious problems. First, access at 

the bit level is necessary in such representations. Further, the length node, in bits, is not usually a multiple of 

8, i.e, the nodes are not on the frontier of byte. As a result, we will have to use a table of bits for the trie 

representation and, consequently, to write the procedures of management of the table in assembly 

language. 



 

The problem in the TB-LR' sequential  representation is that of the distinction between an internal node 

and an external one. If we use a code at 8 bits which is very frequent, the presence of a 9-th bit is 

necessary. It is almost impossible to use an array of an evolved programming language because first, the 

items have the same attributes and second, the problem of frontier will always appear. 

 

An implementation of these two representations has been developed in PL1 with the algorithms described 

in this paper. We recall that PL1 allows the access of a bit. Further, we dispose of functions of conversion 

such as   

 - transformation of a table of bits to a string of bits and vice versa. 

 - transformation of a string of bits to a character and vice versa. 

 - transformation of a string of bits to a number and vice versa. 

Which facilitates the management of the table. 

In our implementation the distinction between an internal node and a external node has been made as 

follows : An external node is represented by a positive number. the most left bit is thus to 1. The value 0 

represents the nil. An internal node is a digit which is represented in EBCDIC. For the alphabetic and 

numerical digits the left bit is to 1. We represented conventionally the space by X'C0'. 

 

9. Comparison to others methods  
 
Trie hashing was conceived by W. Litwin in 1981. The analysis of the method, mainly by simulation, have 

been made in /LIT 85/. we present below some results. We first compare the method with b-tree, the most 

used actually, then with others methods. 

 

 b-tree 

 

In a b-tree, a key is typically found in three to five access disk, depending logarithmically on the file size. 

The load factor stays close to 70 per cent. The file is ordered. These properties have made b-tree one of 

the most popular data structures.  

 

In Trie hashing, the search is 2-4 times faster than the one in a b-tree. If for random insertions, the load 

factor is typically the same, it is 10-20 per cent better than the 50 per cent of a b-tree. This is, of course,  in 



the case where the trie can fit in the core, i.e. for files attaining millions of records. For larger files, an 

extension of the method exists /ZEG 87/. 

 

 Others methods 

 

Trie hashing is typically faster than the known algorithms for classical hashing. Contrary to these methods, 

trie hashing keeps the file ordered and it is devoted also for dynamic files. Among the methods recently 

conceived, trie hashing is at least two times faster than in Grid files /NIE 84/ and slightly faster than in 

interpolation hashing /BUR 83/. 

 

10. Conclusion 

 

The sequential representation requires two times less space than the standard one. On the other hand, it 

presents certain major inconvenient. The representation of a node of a length that is not a multiple of 8 

makes their implementation not evident for most of programming languages. Unless to program certain 

parts in assembly language. The algorithmic is complex. Especially for the LL-TB sequential representation 

in which we handle arrays of variable length. So, for the machines of 8 bits, we recommend the sequential 

representations as defined in G'. The LL-TB sequential representation uses more space than the TB-LR 

one but it could be faster.  On the other hand, the TBLR' one is not recommended in such machines. In 

machines of 7 bits, the TB-LR' is the most efficient. It is the more compact and its algorithmic is simple in 

comparison with the LL-TB one. In the extension of trie hashing , called multilevel trie hashing /ZEG 87/, 

we recommend the sequential  representations by paths (TB-LR or TB-LR'). In this case, the algorithmic 

could be simpler than if the standard representation is used. Indeed, the split of the trie is simple and we 

have not to rotate the trie. As for the time of key-address transformation the standard representation is the 

faster. 
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