Trie hashingwith the sequential representationsof thetrie
D.E Zegour, W. Litwin*
INSTITUT NATIONAL D'INFORMATIQUE

Abstract : Trie hashing is one of the fastest methods for accessing data on the disk. As long as the trie
isin core, any key search takes at most one disk access. The trie size depends linearly on the file size
and on the representation chosen for the trie. The representation considered until now was called

standard representation. We propose two representations that are about two times more compact. The

same buffer in core, suffice then for about two times larger file. The price is that the agorithmicis

more complex and needs more processing time.

Keywords : Algorithms, Data structures, File structures, B-trees, Hashing, Dynamic hashing.

Plan
1. Introduction 2. Basic principles
3. New graphs 4. Sequential representations

5. The LL-TB sequential representations

5.1. The principle 5.2. Insertion

5.3. Key search 5.4. Sequential search
6. The TB-LR sequential representations

6.1. The principle 6.2. Insertion

6.3. Key search 6.4. Sequential search
7. Analysis

7.1. Standard representation

7.2. The LL-TB sequential representations

7.3. The TB-LR sequential representations
8. Implementation 9. Comparison with others methods
10. Conclusion

Bibliography, Figures.

* Researcher at INRIA, France

1. Introduction

Trie hashing is a new access method proposed in /LIT 81. The method allows to constitute dynamic
ordered files of records identified with a primary key. As for the related others methods, the load factor is
on the average 70% for random insertions. It's about 60-70% for sorted insertions/LIT 85/. A key search
is performed in one disk access at mogt, even for files attaining millions of records. These properties place

the method among the fastest access ones.

The trie can be represented in the memory in several ways. The basic representation in /LIT 81/, caled
standard representation, needs about six bytes/node. In this representation, any bucket needs at least one
node. It is shown in /LIT 81/ that a file of 100 000 buckets needs then about 10K buffer for its trie. For

large files, trie size needed may become prohibitive for some applications.

The idea explored in this paper is to increment the ratio of file Size to trie size by using more compact trie

representations. We called the proposed representations LL-TB and TB-LR sequentiad representations.

We will show that with these representations, we can double the file for the same size of the memory
alocated for the trie. The counterpart, this involves a more complicated agorithmic. In addition, the
computing time will be higher. Nevertheless, the trade-of should be interesting for many applications.

Section 2 recalls the basic principles of /LIT 81/. Section 3 and 4 introduce the representations. Sections 5
and 6 present briefly the corresponding search, splitting and sequential search agorithms. Section 7
discusses performance. Section 8 gives a possible implementation. In section 9, comparisons with others

methods are made. Section 10 concludes the paper.

2. Basic principles

Trie hashing uses a dynamic hashing function that is represented by a trie. The function maps the key
values on the bucket addresses. Initially, i .e before the first collision, all keys are mapped to the address
zero. Then, when collisons occur, the key vaues extend linearly. Collisions are resolved by splitting. Each
split extends the file by one bucket. The trie consists of two kinds of rodes: interna and external nodes.
Each split creates one external and one internal node, at least. The trie may be represented in storage in

several manners. Two types of such representations were called respectively standard and seguential

representation /LIT 81/.

In the standard representation the trie is represented as a binary tree. To each internal node correspond
two fidds : avaue field and a pointer field. Value field is a pair (DV,DN) where DV is a digit vaue and
DN is a digit number. Pointer field is a pair (LP,UP) where LP and UP are pointers either to internal or
external nodes. Buckets are designated by external nodes. A negative pointer indicates a pointer to an
internal node. The trie is extended amost linearly, i. e, a each plit, at least, one node is added at the end
of the file. A split may end more than one node, but this event is rare /LIT 85/. Fig(1) shows the graph G
of the trie after insertions of 31 keys. The search and splitting agorithms corresponding to this
representation arein /LIT 81/.

The principle of a sequentia representation of a graph is that nodes are in some predefined order. We
then save the space needed by the pointers. This renders the sequential representations more compact than
standard ones. In contrast, the algorithmic has to be more complex asit involves shifting of nodes so that to

preserve the predefined order.

In/LIT 85/, two sequential representations were mentioned:
(i) -the nodes correspond to the leaves of the graph G visited in ascendant (left-to-right) order,
(i)-The nodes correspond first to al nodes of level 1 in ascendant order of digits; then, in the same order,

al nodes of leve 2. And so on..

More details may be found in /LIT 81/.

Below, we consider that the file is a collection of buckets numbered from O to N. Each bucket has a
capacity b.

Each key isof theform C =d0dLl...dl

where di isadigit of agiven aphabet. i isthe digit level. In what follows, the aphabet is the usua one. The
maximal digit value will be denoted '. The symbol ' ' denote one space. We will aso suppose that the
method principles of trie hashing defined in /LIT 81/ or /LIT 85/ are known. We will be interested mainly in
the manner in which the trie is constructed. So, we will designate by C' the middle key of the sequence of
the b+1 keys and by C" the greatest one. We will also assume that the sequence chosen for the split is
cOcl..ck and | isthe number of digits that already exist in the trie. The variable m denotes the address
of the bucket undergoing the split and the variable M the next bucket to allocate for thefile.

3. New graph

In our study, we consider the hashing function as a m-ary trie. Fig(2) shows the new graph G' representing
the trie for the example file. In what follows, we give the correspondence between the binary and mary
tries. Let usrecal that at each collision, one determines the shortest sequence of digits which permits to
split the b+1 keys. At a given time, let S be the sequel of the al sequences. A digit di is told logica

descendant of dk of order hif there exist a sequencein S containing both di and dk such asi=k+h.

The new graph G' we have considered is a mary trie. It contains as much nodes as internal nodes in the
graph G representing the binary trie. In the graph G, alevel consigts of al the internal nodes having the
same number digit. In alevel, the nodes are divided in classes so-called sublevels. The digits of nodes of a
sublevel inthelevel i are thelogical descendants of order 1 of adigit of anodeintheleve i-1. Then, at the
leve O, there is only one sublevel, and usualy, there are many sublevels by level. Furthermore, within the
sublevels, the digits are in ascendant order.

Each node consists of two fields: a node digit and a node pointer. Node digits concatenation of each path
from root node to a given node represents the maximal key of a bucket. If we choose LP as node pointer,
the maximal key corresponds to the bucket pointed by the node pointer of the same node (case of Fig 2a).
if we choose UP as node pointer of a node, the maximal key corresponds to the bucket addressed by the
node pointer of the next node with respect to the traversal in postorder (case of Fig 2b).

Note the interesting property that if we list the node pointer of the mary trie in postorder (i.e, for each
node n of the trie we apply the rule T1T2..TK n) /KNU 73/,then the bucket addresses stored at these
node pointers are listed in sorted order.

We can extend the graph G' by external nodes. We obtain thus an extended graph so-cadled below G'e.
Fig3 gives the extended graphs corresponding to the graphs of fig2. In this graph, there are two sorts of
nodes. The internal nodes are digits and the external ones are pointers to the buckets.

In the next section, we present the sequential representations we can define in the graphs G' and G'e.

4. Sequential representations

The sequentia representations we will analyze correspond then, on the one hand, to the traversa of the
new graph G' in the following orders:

() - Lefttorightinaleve, then from top to bottom.

(ii)- From top to bottom, then left to right.
and, on the other hand, to the traversal of the graph G'e in the order (ii).

We cdlled the representation corresponding to (i) the LL-TB sequentia representation because the nodes

are represented as follows. The nodes of the level 0 I€ft to right, then the nodes of the level 1 in the
same order; and so forth...

We cdlled the representation corresponding to (ii) the TB-LR sequential representation because the nodes

are represented as follows. The nodes of the most Ieft path from top to bottom, then those of the path
immediately to the right; and o forth...

To distinguish the two representations corresponding to (ii), we will cal the one definedin Gethe TB-LR'
sequential representation.

In the graph G', a node may be represented as a 3-uplet with the fidlds DV, UP and B. DV is the digit
vaue, UP is the upper pointer and B is the leaf bit equa to O if the internal node is aleaf and 1 otherwise.

In this graph, for the level 0 and for each sublevel we aso consider a counter of the number of nodes.
With these considerations, if we represent the counter between < > and if we take UP as node pointer of a
node (fig2a), then the LL-TB sequential representation of the graph G' will be :

(1) : <7> (a4,1) (b,10,0) (f,7,0) (n,6,1) (1,2,1) (0,1,0) (t,5,0) <1> (,9,0) <1> (€8,0) <1> (,3,0)

the TB-LR sequentia representation of the graph G' will be
an : <7>(a4,1) <1> (r,9,0) (b,10,0) (f,7,0) (h,6,1) <1> (¢8,0) (i,2,0) <1> (_,3,0) (0,1,0) (t,5,0)

In the graph G'e, there are two sorts of nodes. If we represent the external node between < > and if we

take LP as node pointer of a node (fig3b), then the TB-LR' sequentia representation could be:

() :ar<0><9>b<4>f<10>he<7><8 1 _<6><3>0<2>1t<1><5>

We shall see, latter on, how the distinction between an internal and an external node could be done.

Below, we andyze the agorithmic corresponding to the two types of representation. |. e, one
representation defined in the graph G' and one defined in the graph G'e. Thus, we make this, in detail, only
for the LL-TB and TB-LR' sequential representation ((1) and (111)). Indeed, we shall see, latter on, that
the adgorithmic of the TB-LR sequentia representation is similar to the TB-LR' one.

5. The LL-TB sequential representation:

5.1 Theprinciple

This representation is the one defined in /LIT 85/. Aninternal node is a 3-uplet with thefilds DV , UP and
B. DV isthe digit value, UP is the upper pointer and B isthe leaf bit equal to O if the internal node is a lesaf
and 1 otherwise. We represent neither the level of node nor the pointer to other internal nodes. The level of
digit is the level of node in the mary trie. Furthermore, as the order of nodes is predefined, we do not

need pointers.

5.2 Insertion

We first search the bucket that should contain the key to insert. If the key is not in it and if the bucket is
full, then a collision occurs. It will be processed as follows.

Let us consider the shortest sequence c'Oc'l...c’k selected for the split. We first retrieve the first | digits
which aready exist in the trie. Let Node' be the last node (with the digit c'i-1) visited at the level i-1. Then,
we insert (K-1+1) dgits, each one of them in the corresponding level. If a single digit is selected by the
split, i. € no nil nodes, one inserts either the node (ck,M,0) into a sublevel or a sublevel with this node in
the level k according to the value of the leaf bit of the last visited node in level i-1 (1 or 0). For the insertion

of the nil nodes, if any, we consider two cases.

-Insartion of the first nil node:

The leaf bit of the last visited node in level i1 is either 1 or 0. For the first case, the sublevel of levd i
exisgts. We insert then the nil node in this sublevel and we bring up-to-date the leaf bit of the node Node'.

For the second case, we create a sublevel with the nil nodein levd i.

-Insertion of the others nil nodes:
We create sublevels in the leve i+1, i+2, . .. k1l successively. Every time we create a node in a

sublevel, we increase the counter of the number of nodes.

Suppose we want to insert the key 'help’ in Fig2a. A collision will occur in bucket 7. The shortest sequence
selected for the split is 'he '. The sequence 'he' exists aready in the trie. We create a node with the

following vaues:

DV=_";UP=11 ; B=0
a level 2. Since the latter does not exist, we create then a sublevel consisting of this node. Further, we
associate to it a counter with the value 1. Note that the node's leaf bit with digit value i at level 1 is set to

1
We obtain then

<7> (a4,1) (b,10,0) (f,7,0) (h,6,) (,2,1) (0,L,0) (50) <1> (r,9,0) <1> (€8,1) <1> (,3,0) <1> (,11,0)

5.3 Key search

key search is performed as follows: let C=c1c2.. be the searched key. We search at level 0 a node with a

digit dO such as C <= d0:::::::. If this node does not exist then the fidld UP of the last visited node gives the

bucket which should contain the key C. Otherwise we analyze the two following cases:

- the node is a leaf and we stop the search. The field UP of the preceding node holds the address of the
bucket which should contain the key C.

- the node is not a leaf. We process its sons which are obvioudy at level 1. Likewise, either we find a

node with digit d1 such as C<=d0d1::::::: or not. We tregt this node as previoudy. And so on...

5.4 Sequential search

As we have outlined it above, the traversa of the graph G' in postorder gives the orted sequence of
buckets. In our example file , if we traverse the graph G' of Fig2a (or Fig2b) in that order, we obtain the

following sorted sequence of buckets:

0,9410,7,86,3,215

As nodes are represented in a predefined order, for each node Node belonging to leve i, we must compute
the address of the next level i+1, its number of sublevels and the number of the sublevel that contains the

sons of the node Node. This alows us to use arecursive call.

6. The TB-LR sequential representation

6.1 Theprinciple

In this representation, the trie is a sequel of external and internal nodes. An interna node is a digit; an
external node is a pointer to a bucket. The internal nodes are stored by paths. We represent first the
internal nodes of the most Ieft path, from top to bottom. Then those of the path immediately to the right in
the same order, and so forth. the external nodes follow the internal ones associated with a path. As we
represent the internal nodes from top to bottom in a path, their leve is shown implicitly in the path. So, in
the path bOb1l....bn, i isthe leve of digit b. Further, the digits (or internal nodes) are suchthat b0 < bl<

bn. Usualy, there are common nodes to many paths. In this manner, they are not duplicated.

6.2 Insertion

As described previoudy, a each new collision, we make the following operations : Let m be the bucket
undergoing the split, M the next bucket to allocate, K and | corresponding the usual parameters. We first
search the path of the trie containing the first | digits. Let cOc'l...ci be this path. Then, we insert the
sequence Cli+1 cli+2....c’k such as c'i+1 would be a son of c'i, c'i+2 a son of c'i+1, and so forth. To respect

the order of nodes at each level, the son must be inserted at its appropriate position among this brothers.

Then, we replace the old bucket m by M. Findly, we generate (K-1-1) nil nodes. On the average, an

internal node and an externa one are created by collision.

As seen previoudy, if we want to insert the key 'help' in the case of Fig3a, a collision occurs in bucket 7.
The sequence chosen for the split is 'he . The interna nodes 'h' and '€’ aready exist in the trie. Node *_'
becomes a son of node '€. We associate to node ' an external node with value 11. The path is then

extended by nodes' ' and 11. We obtain the following representation:

ar<0><9>p<4>f<10>he_<11><7><8>i_<6><3>0<2>t<1><5>

6.3 Key search

Key search is performed as follows: we start by the most Ieft path. Then we go over al the internal nodes,

...dn are the nodes of the path. Either the searched key C is less or equal than this maximal key and the
concerned bucket is found, or the encountered bucket is not the right one. In the last case, we take the
following external node and the maxima key becomes dld2...dn-1::.... Then, we repeat the same
steps. If there are no external node and the concerned bucket is not found, we go to the path immediately

to right, and so forth. The traversd is stopped when the bucket is found.

6.4 Sequential search

Sequential search is performed easily. It consist of reading the pointers in order in the linear representation.
Although in the TB-LR sequentia representation there is only one type of node, the corresponding
agorithmic is smilar to the one defined in the TB-LR' sequential representation, except that the sequential
search agorithm needs, in addition, a stack.

7. Analysis.

We will study in this section the memory space and the necessary computing time of key-address
transformation's algorithm for the two sequential representations seen above. In addition, we recall this for

the standard representation for comparison purposes.

Let -x be the number of recordsin thefile.
-b be the capacity of a bucket
-f be the load factor

f isx/(n.b), n being the number of buckets of the file

We will take b=100 and f=0.7.
The ratio x/f.b represents also the number of buckets in the file. Indeed, we have x/(f.b) = x/((x/(n.b).b) =
n.
At each split:
-thefileis extended by one bucket.

-the trie is extended on the average by one internal node for the standard representation and for the
sequentia representations defined in the graph G' (LL-TB and TB-LR) and by one internal node and one
external node for the one defined in the graph G'e (TB-LR).

The size and the structure of the node depend on the chosen representation. We designate by M" the
number of bytes needed for a given representation. For every representation, we will set in the following
cases of digits: character, numerical and binary. Then, we will observe the space needed by the tries
corresponding to various representations for 35 000, 140 000, 800 000 and two millions of records. a will
designate the number of nil nodes. The field address at alevel with nodes takes two bytes, which allows to
address afile of 32K buckets.

7.1 standard representation

Thetrieisalinked list of internal nodes. An interna nodeis a 4-uplet (LP,UP,DV,DN).
-If the digits are alphabetic, we may choose 1 byte for DV and 1 byte for DN. A node is then represented
using 6 bytes.
We then have:
M"=6(M +a)
-4 bits per DV are sufficient for numerical digits. Usualy, the numerica key does not exceed 16 digits.

Thus, 4 others bits suffice for DN. It results :

M"=5(M +a)
-If the digits are hits, the field DV is not necessary since we aways have DV=0. Likewise, 4 bits suffice
to indicate the number of digits. Therefore :

M"=45M +)

The time corresponding to the key-address transformation is LOG2(M'+a).

7.2 The LL-TB sequential representation

The trie is a collection of M-ary vectors of variable length, where each vector is associated to one sublevel
(or level 0). An item of a vector is a 3uplet (DV,UP,B). Let L be the length in bytes of such a node.
There is a counter NC in each sublevel which gives the number of nodes. We may choose 1 byte for NC,

which alows us to have 256 nodes per vector. Further, for every collision :

(1)- either we insert anode at a sublevel in which case the trieis extended by L bytes,

(i)-or we insert asublevel at alevel in which casethe trie is extended by (L+1) bytes.

We can suppose that when the number of keys to insert increases, the insertions of sublevels become
rare(to confirm possibly by smulation).
We then have:
M'=L (M'+a)+s
s, being the number of insertions of sublevels.
Indeed, if nis the number of nodes inserted at level i, we have
M"=Ln+ (L + 1)s
orM"=LM'+s
and with respect to nil nodes
M"=L (M'+a) +s
We aso can write
M" = (L+h) (M'+a) with O<h<l.
-for the aphabetic digits we have :
M"=(3+h) (M +a)

-for the numericd digits we have :

M"=(25+h) (M"+3)
-For the binary digits we have :
M"=(2+h)(M'+a)

The nodes are visited sequentially, level by level, until the searched key isfound. At aleve ,
(@) -we consult the fields DV, UP and B of anode belonging to a single level.
(aa) -we only consult the field B of nodes of al the others sublevels.
The number of visited nodes is of the order of N/2. However, on the average, if we consider time spending

in (ad) negligible compared to the one in (a), it would be LOGb(M'+a), b being the number of sublevels by
leve.

7.3 The TB-LR sequential representation

The trie is a sequel of internal and external nodes. The internal nodes are digits and the external ones are
pointers to the buckets. At each collision the trie is extended by one internal node and one externa node.
Thus, with the above considerations:
- for the aphabetic digits we have :

M"=3(M'+3a)
- for the numerical digits we have :

M" =25 (M +a)
- for the binary digits we have :

M"=2(M'+a)

The search is made path by path. On the average, half of the paths is traversed before finding the right
bucket. The number of visited nodes is thus of the order of N/2, N being the number of both interna and

external nodes. Fig 4 gives some examples.

To sum up, the sequential representation defined in the graph G'e (TB-LR') is the most compact. But the
difference with the ones defined in the graph G' (LL-TB and TB-LR) is not very important. On the other
hand, The agorithmic corresponding to the sequentia representations by path (TB-LR and TB-LR') isless
complex than the one corresponding to the representation by level (LL-TB). Asfor the time of calculation
of an address, it is the same for the TB-LR and TB-LR' sequential representations, i. e, of the order of
N/2. However, as we have outlined it above, it could be much faster in the LL-TB sequentia

representation.

8. Implementation

If the standard representation does not set problems for its implementation in a language such as
PASCAL, FORTRAN, BASIC, the sequentia representation could set serious problems. First, access at
the bit level is necessary in such representations. Further, the length node, in bits, is not usually a multiple of
8, i.e, the nodes are not on the frontier of byte. As a result, we will have to use a table of bits for the trie
representation and, consequently, to write the procedures of management of the table in assembly

language.

The problem in the TB-LR' sequential representation is that of the distinction between an interna node
and an external one. If we use a code at 8 bits which is very frequent, the presence of a 9th hit is
necessary. It is amost impossible to use an array of an evolved programming language because first, the

items have the same attributes and second, the problem of frontier will always appear.

An implementation of these two representations has been developed in PL1 with the agorithms described
in this paper. We recall that PL1 allows the access of a bit. Further, we dispose of functions of conversion
such as

- transformation of atable of bitsto a string of bits and vice versa

- transformation of a string of bits to a character and vice versa.

- transformation of a string of bits to a number and vice versa.
Which facilitates the management of the table.
In our implementation the distinction between an internal node and a externa node has been made as
follows : An externa node is represented by a positive number. the most |eft bit is thus to 1. The vaue O
represents the nil. An interna node is a digit which is represented in EBCDIC. For the aphabetic and
numerical digits the left bit isto 1. We represented conventionally the space by X'CO'.

9. Comparison to others methods

Trie hashing was conceived by W. Litwin in 1981. The analyss of the method, mainly by smulation, have
been made in /LIT 85/. we present below some results. We first compare the method with b-tree, the most
used actually, then with others methods.

b-tree
In a btree, akey is typicdly found in three to five access disk, depending logarithmically on the file size.
The load factor stays close to 70 per cent. The file is ordered. These properties have made b-tree one of

the most popular data structures.

In Trie hashing, the search is 24 times faster than the one in a btree. If for random insertions, the load

factor istypicdly the same, it is 10-20 per cent better than the 50 per cent of a b-tree. Thisis, of course, in

the case where the trie can fit in the core, i.e. for files attaining millions of records. For larger files, an
extension of the method exists /ZEG 87/.

Others methods

Trie hashing is typically faster than the known agorithms for classical hashing. Contrary to these methods,
trie hashing keeps the file ordered and it is devoted also for dynamic files. Among the methods recently
conceived, trie hashing is at least two times faster than in Grid files /NIE 84/ and dightly faster than in
interpolation hashing /BUR 83/.

10. Conclusion

The sequential representation requires two times less space than the standard one. On the other hand, it
presents certain major inconvenient. The representation of a node of a length that is not a multiple of 8
makes their implementation not evident for most of programming languages. Unless to program certain
parts in assembly language. The agorithmic is complex. Especialy for the LL-TB sequentia representation
in which we handle arrays of variable length. So, for the machines of 8 bits, we recommend the sequentia
representations as defined in G'. The LL-TB sequentia representation uses more space than the TB-LR
one but it could be faster. On the other hand, the TBLR' one is not recommended in such machines. In
machines of 7 hits, the TB-LR' is the most efficient. It is the more compact and its algorithmic issmplein
comparison with the LL-TB one. In the extension of trie hashing , called multilevel trie hashing /ZEG 87/,
we recommend the sequential representations by paths (TB-LR or TB-LR). In this case, the agorithmic
could be smpler than if the standard representation is used. Indeed, the split of the trie is smple and we
have not to rotate the trie. As for the time of key-address transformation the standard representation is the
faster.

Bibliography :

/BUR 83/

W. Burkhard

Interpolation-Based Index Maintenance
PODS 83. ACM, (March 1983), 76-89.

/IKNU 73/

D.E KNUTH
The art of computer programming. Vol 3
Addison Weday, 1973

/LIT 8Y

W. LITWIN

Trie hashing

SIGMOD 81, ACM, (May 1981), 19-29

/LIT 85/

W. LITWIN

Trie hashing, further properties and performances

Int. Conf. On foundation of Data organisation. KYOTO, May 1985

INIV 84/

Nievergdt, J., Hinterberger, H., Sevcik, K., C.

The grid file : an adaptable, symetric multikey file structure.
ACM TODS, (March 1984).

[ZEG 87/

D.E ZEGOUR - W. LITWIN

Multilevel trie hashing

Int. Conf. of database. Venise, Italy, December 1987.

