
1

Scalable Distributed
Data Structures

State-of-the-art
Part 1

Scalable Distributed Scalable Distributed
Data StructuresData Structures

SStatetate--ofof--thethe--artart
Part 1Part 1

Witold LitwinWitold Litwin
Paris 9Paris 9

litwinlitwin@dauphine.@dauphine.frfr

2

PlanPlanPlan

�� What are SDDSs ?What are SDDSs ?
�� Why they are needed ?Why they are needed ?
�� Where are we in 1996 ?Where are we in 1996 ?

–– Existing SDDSsExisting SDDSs
–– Gaps & OnGaps & On--going workgoing work

�� ConclusionConclusion
–– Future workFuture work

3

What is an SDDSWhat is an SDDSWhat is an SDDS

�� A new type of data structureA new type of data structure
–– Specifically forSpecifically for multicomputersmulticomputers

�� Designed for Designed for highhigh--performanceperformance files :files :
–– horizontalhorizontal scalability to very large sizesscalability to very large sizes

»» larger than any singlelarger than any single--site filesite file
–– parallel and distributed processing parallel and distributed processing

»» especially in (distributed) RAMespecially in (distributed) RAM
–– access time better than for any disk fileaccess time better than for any disk file

–– 200 200 µµs under NT (100 Mb/s net, 1KB records)s under NT (100 Mb/s net, 1KB records)

–– distributed autonomous clientsdistributed autonomous clients

4

Killer appsKiller appsKiller apps
�� Storage serversStorage servers

–– software & hardware scalable & HA serverssoftware & hardware scalable & HA servers
–– commodity component based commodity component based

»» DoDo--ItIt--YourselfYourself--RAIDRAID

�� Object storage serversObject storage servers
�� ObjectObject--relational databasesrelational databases
�� WEB serversWEB servers

–– like like InktomiInktomi
�� Video serversVideo servers
�� RealReal--time systemstime systems
�� HP Scientific data processingHP Scientific data processing

5

MulticomputersMulticomputersMulticomputers
�� A collection of loosely coupled computersA collection of loosely coupled computers

–– common and/or preexisting hardwarecommon and/or preexisting hardware
–– share nothing architectureshare nothing architecture
–– message passing through message passing through highhigh--speedspeed net (net (≥==10=≥==10=Mb/s)Mb/s)

�� NetworkNetwork multicomputersmulticomputers
–– use general purpose netsuse general purpose nets

»» LANs: Ethernet, Token Ring, Fast Ethernet, SCI, FDDI...LANs: Ethernet, Token Ring, Fast Ethernet, SCI, FDDI...
»» WANsWANs: ATM...: ATM...

�� SwitchedSwitched multicomputersmulticomputers
–– use a bus, or a switchuse a bus, or a switch

»» e.g., IBMe.g., IBM--SP2, SP2, ParsytecParsytec

6

Client Server

Network multicomputer

7

Why multicomputers ?WhyWhy multicomputersmulticomputers ??
�� Potentially unbeatable pricePotentially unbeatable price--performance ratioperformance ratio

–– Much cheaper and more powerful than supercomputersMuch cheaper and more powerful than supercomputers
»» 15001500 WSsWSs at HPL with 500+ GB of RAM &at HPL with 500+ GB of RAM & TBsTBs of disksof disks

�� Potential computing powerPotential computing power
–– file sizefile size
–– access and processing timeaccess and processing time
–– throughputthroughput

�� For more pro & cons :For more pro & cons :
–– Bill Gates at Microsoft Scalability DayBill Gates at Microsoft Scalability Day
–– NOW project (UC Berkeley)NOW project (UC Berkeley)
–– TanenbaumTanenbaum: "Distributed Operating Systems", Prentice Hall, 1995: "Distributed Operating Systems", Prentice Hall, 1995
–– www.www.microoftmicrooft.com White Papers from Business.com White Papers from Business SystSyst. Div. . Div.

8

Why SDDSsWhy SDDSsWhy SDDSs

�� Multicomputers need data structures and Multicomputers need data structures and
file systemsfile systems

�� Trivial extensions of traditional structures Trivial extensions of traditional structures
are not bestare not best

�� hothot--spotsspots
�� scalabilityscalability
�� parallel queriesparallel queries
�� distributed and autonomous clientsdistributed and autonomous clients
�� distributed RAM & distance to datadistributed RAM & distance to data

9

Distance to data
(Jim Gray)

Distance to dataDistance to data
(Jim Gray)(Jim Gray)

100 ns

1 µsec

10 msec

RAM

distant RAM
(gigabit net)

local disk

100 µsec distant RAM
(Ethernet)

10

Distance to dataDistance to dataDistance to data

100 nsec

1 µsec

10 msec

RAM

distant RAM
(gigabit net)

local disk

100 µsec distant RAM
(Ethernet)

1 min

11

Distance to dataDistance to dataDistance to data

100 ns

1 µsec

10 msec

RAM

distant RAM
(gigabit net)

local disk

100 µsec distant RAM
(Ethernet)

1 min

10 min

12

Distance to dataDistance to dataDistance to data

100 ns

1 µsec

10 msec

RAM

distant RAM
(gigabit net)

local disk

100 µsec distant RAM
(Ethernet)

1 min

10 min

2 hours

13

Distance to dataDistance to dataDistance to data

100 ns

1 µsec

10 msec

RAM

distant RAM
(gigabit net)

local disk

100 µsec distant RAM
(Ethernet)

1 min

10 min

8 days

lune

2 hours

14

Economy etc.Economy etc.Economy etc.
�� Price of RAM storage dropped in 1996 Price of RAM storage dropped in 1996

almost almost 1010 times times !!
–– $10 for 16 MB (production price)$10 for 16 MB (production price)
–– $30$30--40 for 16 MB RAM (end user price)40 for 16 MB RAM (end user price)

»» $47 for 32 MB (Fry’s price, Aug. 1997)$47 for 32 MB (Fry’s price, Aug. 1997)

–– $1000 for 1GB$1000 for 1GB
�� RAM storage is eternal (no mech. parts)RAM storage is eternal (no mech. parts)
�� RAM storage can grow incrementallyRAM storage can grow incrementally
�� NT plans for 64b addressing for VLMNT plans for 64b addressing for VLM
�� MS plans for VLMMS plans for VLM--DBMSDBMS

15

What is an SDDSWhat is an SDDSWhat is an SDDS
�� A A scalablescalable data structure where:data structure where:
☞☞ Data are on Data are on serversservers

–– always available for accessalways available for access

☞☞ Queries come from autonomous Queries come from autonomous clientsclients
–– available for access only on their initiativeavailable for access only on their initiative

☞☞ There is no centralized directoryThere is no centralized directory
☞☞ Clients may make Clients may make addressing errorsaddressing errors

»» Clients have less or more adequate Clients have less or more adequate image image of the actual file structureof the actual file structure

✌✌ Servers are able to Servers are able to forwardforward the queries to the correct addressthe queries to the correct address
–– perhaps in several messagesperhaps in several messages

☞☞ Servers may send Servers may send Image Adjustment MessagesImage Adjustment Messages
»» Clients do not make same error twiceClients do not make same error twice

16

An SDDSAn SDDSAn SDDS

Clients

growth through splits under inserts

Servers

17

An SDDSAn SDDSAn SDDS

Clients

growth through splits under inserts

Servers

18

An SDDSAn SDDSAn SDDS

Clients

growth through splits under inserts

Servers

19

An SDDSAn SDDSAn SDDS

Clients

growth through splits under inserts

Servers

20

An SDDSAn SDDSAn SDDS

Clients

growth through splits under inserts

Servers

21

An SDDSAn SDDSAn SDDS

Clients

22

Clients

An SDDSAn SDDSAn SDDS

23

Clients

IA
M

An SDDSAn SDDSAn SDDS

24

Clients

An SDDSAn SDDSAn SDDS

25

Clients

An SDDSAn SDDSAn SDDS

26

Performance measuresPerformance measuresPerformance measures

�� Storage costStorage cost
–– load factorload factor

»» same definitions as for the traditionalsame definitions as for the traditional DSsDSs

�� Access costAccess cost
�� messagingmessaging

–– number of messages (rounds)number of messages (rounds)
»» network independentnetwork independent

–– access timeaccess time

27

Access performance measuresAccess performance measuresAccess performance measures

�� Query costQuery cost
–– key searchkey search

»» forwarding costforwarding cost
–– insertinsert

»» split costsplit cost
–– deletedelete

»» merge costmerge cost
–– Parallel search, range search, partial match search, bulk Parallel search, range search, partial match search, bulk

insert... insert...
�� Average & worstAverage & worst--case costscase costs
�� Client image convergence costClient image convergence cost
�� New or less active client costsNew or less active client costs

28

Known SDDSsKnown SDDSsKnown SDDSs
DS

Classics

29

Known SDDSsKnown SDDSsKnown SDDSs

Hash

SDDS
(1993)

LH*
DDH

Breitbart & al

DS
Classics

30

Known SDDSsKnown SDDSsKnown SDDSs

Hash

SDDS
(1993)

1-d tree
LH*

DDH
Breitbart & al RP*

Kroll & Widmayer

DS
Classics

31

Known SDDSsKnown SDDSsKnown SDDSs

Hash

SDDS
(1993)

1-d tree
LH*

DDH
Breitbart & al RP*

Kroll & Widmayer

m-d trees
k-RP*

dPi-tree

DS
Classics

32

Known SDDSsKnown SDDSsKnown SDDSs

Hash

SDDS
(1993)

1-d tree
LH*

DDH
Breitbart & al RP*

Kroll & Widmayer

m-d trees

DS
Classics

H-Avail.

LH*m, LH*g
Security LH*s

k-RP*
dPi-tree

33

Known SDDSsKnown SDDSsKnown SDDSs

Hash

SDDS
(1993)

1-d tree
LH*

DDH
Breitbart & al RP*

Kroll & Widmayer

m-d trees

DS
Classics

H-Avail.

LH*m, LH*g
Security LH*s

k-RP*
dPi-tree

s-availability
LH*sa

34

LH* (A classic)LH* LH* ((A classic)A classic)

�� Allows for the primary key (OID) based hash filesAllows for the primary key (OID) based hash files
–– generalizes the LH addressing schemageneralizes the LH addressing schema

�� Load factor 70 Load factor 70 -- 90 %90 %
�� At most 2 forwarding messagesAt most 2 forwarding messages

–– regardless of the size of the fileregardless of the size of the file

�� In practice, 1 m/insert and 2 m/search on the In practice, 1 m/insert and 2 m/search on the
averageaverage

�� 4 messages in the worst case4 messages in the worst case
�� Search time of 1 ms (10 Mb/s net), of 150 ms Search time of 1 ms (10 Mb/s net), of 150 ms

(100 Mb/s net) and of 30 us ((100 Mb/s net) and of 30 us (GbGb/s net)/s net)

35

Overview of LHOverview of LHOverview of LH
�� Extensible hash algorithmExtensible hash algorithm

–– used, e.g., used, e.g.,
»» Netscape browser (100M copies)Netscape browser (100M copies)
»» LHLH--Server by AR (700K copies sold)Server by AR (700K copies sold)

–– tought tought in most DB and DS classesin most DB and DS classes
–– address space expandsaddress space expands

»» to avoid overflows & access performance to avoid overflows & access performance
deterioration deterioration

�� the file has buckets with capacity the file has buckets with capacity bb >> 1>> 1
�� Hash by division Hash by division hhii : c : c --> c> c mod 2mod 2i i NN provides the address provides the address

h (c)h (c) of key of key cc..
�� Buckets split through the replacement of hBuckets split through the replacement of hii with with h h ii+1 +1 ; ; i = i =

0,1,..0,1,..
�� On the average, On the average, b/2 b/2 keys move towards new bucketkeys move towards new bucket

36

Overview of LHOverview of LHOverview of LH

�� Basically, a split occurs when some bucket Basically, a split occurs when some bucket m m
overflowsoverflows

�� One splits bucket One splits bucket n, n, pointed by pointer pointed by pointer nn..
–– usually usually m m ≠=≠=nn

�� nn évolueévolue : 0, 0,1, 0,1,..,2, 0,1..,3, 0,..,7, 0,..,2: 0, 0,1, 0,1,..,2, 0,1..,3, 0,..,7, 0,..,2i i NN, 0.., 0..
�� One consequence => no index One consequence => no index

–– characteristic of other EH schemescharacteristic of other EH schemes

37

LH File EvolutionLH File EvolutionLH File Evolution

35
12
7
15
24

h0 ; n = 0

N = 1
b = 4
i = 0
hh00 : c : c --> > 2200

0

38

LH File EvolutionLH File EvolutionLH File Evolution

35
12
7
15
24

h1 ; n = 0

N = 1
b = 4
i = 0
hh11 : c : c --> > 2211

0

39

LH File EvolutionLH File EvolutionLH File Evolution

12
24

h1 ; n = 0

N = 1
b = 4
i = 1
hh11 : c : c --> > 2211

0

35
7
15

1

40

LH File EvolutionLH File EvolutionLH File Evolution

32
58
12
24

N = 1
b = 4
i = 1
hh11 : c : c --> > 2211

0

21
11
35
7
15

1

hh11 hh11

41

LH File EvolutionLH File EvolutionLH File Evolution

32
12
24

N = 1
b = 4
i = 1
hh22 : c : c --> > 2222

0

21
11
35
7
15

1

58

2

hh22 hh11 hh22

42

LH File EvolutionLH File EvolutionLH File Evolution

32
12
24

N = 1
b = 4
i = 1
hh22 : c : c --> > 2222

0

33
21
11
35
7
15

1

58

2

hh22 hh11 hh22

43

LH File EvolutionLH File EvolutionLH File Evolution

32
12
24

N = 1
b = 4
i = 1
hh22 : c : c --> > 2222

0

33
21

1

58

2

hh22 hh22 hh22

11
35
7
15

3

hh22

44

LH File EvolutionLH File EvolutionLH File Evolution

32
12
24

N = 1
b = 4
i = 2
hh22 : c : c --> > 2222

0

33
21

1

58

2

hh22 hh22 hh22

11
35
7
15

3

hh22

45

LH File EvolutionLH File EvolutionLH File Evolution

�� EtcEtc
–– One starts One starts hh3 3 then then hh4 4

�� The file can expand as much as needed The file can expand as much as needed
–– without too many overflows everwithout too many overflows ever

46

Addressing AlgorithmAddressing AlgorithmAddressing Algorithm

a <a <-- h (i, c) h (i, c)
if if n n = 0= 0 alorsalors exit exit
elseelse

if a < n then a <if a < n then a <-- h (i+1, c) ;h (i+1, c) ;
endend

47

LH*LH*LH*

�� Property of LH :Property of LH :
–– Given Given j = i j = i or or j = i j = i + 1, key + 1, key c c is in bucket is in bucket mm iffiff

hhjj ((cc) =) = m ; j = im ; j = i ouou j = i j = i + 1+ 1
»» Verify yourselfVerify yourself

�� Ideas for LH* :Ideas for LH* :
–– LHLH addresingaddresing rule = global rule for LH* filerule = global rule for LH* file
–– every bucket at a serverevery bucket at a server
–– bucket level bucket level j j in the header in the header
–– Check the LH property when the key comes form a Check the LH property when the key comes form a

clientclient

48

LH* : file structure LH* : file structure LH* : file structure

j = 4

0

j = 4

1

j = 3

2

j = 3

7

j = 4

8

j = 4

9

n = 2 ; i = 3

n' = 0, i' = 0 n' = 3, i' = 2 Coordinator

Client Client

servers

49

LH* : file structureLH* : file structureLH* : file structure

j = 4

0

j = 4

1

j = 3

2

j = 3

7

j = 4

8

j = 4

9

n = 2 ; i = 3

n' = 0, i' = 0 n' = 3, i' = 2 Coordinator

Client Client

servers

50

LH* : splitLH* : splitLH* : split

j = 4

0

j = 4

1

j = 3

2

j = 3

7

j = 4

8

j = 4

9

n = 2 ; i = 3

n' = 0, i' = 0 n' = 3, i' = 2 Coordinator

Client Client

servers

51

LH* : splitLH* : splitLH* : split

j = 4

0

j = 4

1

j = 3

2

j = 3

7

j = 4

8

j = 4

9

n = 2 ; i = 3

n' = 0, i' = 0 n' = 3, i' = 2 Coordinator

Client Client

servers

52

LH* : splitLH* : splitLH* : split

j = 4

0

j = 4

1

j = 4

2

j = 3

7

j = 4

8

j = 4

9

n = 3 ; i = 3

n' = 0, i' = 0 n' = 3, i' = 2 Coordinator

Client Client

servers

j = 4

10

53

LH* Addressing SchemaLH* Addressing SchemaLH* Addressing Schema

�� Client Client
–– computes the LH address computes the LH address m m of of c c using its image, using its image,
–– send send c c to bucket to bucket mm

�� ServerServer
–– Server Server a a getting key getting key cc, , a a = = m m in particular,in particular, computes :computes :
a' :=a' := hhjj (c) ;(c) ;
if if a' = a a' = a thenthen accept accept c ;c ;
else else a'' :=a'' := hhjj -- 11 (c) ;(c) ;

if if a'' > a a'' > a and and a'' a'' < < a' a' then then a' a' := := a'' ; a'' ;
send send c c to bucket to bucket a' ;a' ;

54

LH* Addressing SchemaLH* Addressing SchemaLH* Addressing Schema

�� Client Client
–– computes the LH address computes the LH address m m of of c c using its image, using its image,
–– send send c c to bucket to bucket mm

�� ServerServer
–– Server Server a a getting key getting key cc, , a a = = m m in particular,in particular, computes :computes :
a' :=a' := hhjj (c) ;(c) ;
if if a' = a a' = a thenthen accept accept c ;c ;
else else a'' :=a'' := hhjj -- 11 (c) ;(c) ;

if if a'' > a a'' > a and and a'' a'' < < a' a' then then a' a' := := a'' ; a'' ;
send send c c to bucket to bucket a' ;a' ;

� See [LNS93] for the (long) proof

Simple ?

55

Client Image AdjustementClient ImageClient Image AdjustementAdjustement
�� The IAM consists of address The IAM consists of address a a where the client sent where the client sent c c and and

of of j j ((aa))
–– i' i' is presumed is presumed i i in client's in client's image.image.
–– n' n' isis preumedpreumed value of pointer value of pointer n n in client's in client's image.image.
–– initially, initially, i' i' = = n' n' = 0.= 0.

if if j j > > i' i' then then i' i' := := j j -- 1, 1, n' n' := := a +a +1 ; 1 ;
if if n' n' ≥=≥=2^2^i' i' then then n' n' = 0, = 0, i' i' := := i' i' +1 ;+1 ;

�� TheThe algoalgo.. garantees garantees that client image is within the file that client image is within the file
[LNS93][LNS93]
–– if there is no file contractions (merge)if there is no file contractions (merge)

56

LH* : addressingLH* : addressingLH* : addressing

j = 4

0

j = 4

1

j = 4

2

j = 3

7

j = 4

8

j = 4

9

n = 3 ; i = 3

n' = 0, i' = 0 n' = 3, i' = 2 Coordinateur

Client Client

servers

j = 4

10

15

57

LH* : addressingLH* : addressingLH* : addressing

j = 4

0

j = 4

1

j = 4

2

j = 3

7

j = 4

8

j = 4

9

n = 3 ; i = 3

n' = 0, i' = 0 n' = 3, i' = 2 Coordinateur

Client Client

servers

j = 4

10

15

58

LH* : addressingLH* : addressingLH* : addressing

j = 4

0

j = 4

1

j = 4

2

j = 3

7

j = 4

8

j = 4

9

n = 3 ; i = 3

n' = 0, i' = 3 n' = 3, i' = 2 Coordinateur

Client Client

servers

j = 4

10

15

j = 3

59

LH* : addressingLH* : addressingLH* : addressing

j = 4

0

j = 4

1

j = 4

2

j = 3

7

j = 4

8

j = 4

9

n = 3 ; i = 3

n' = 0, i' = 0 n' = 3, i' = 2 Coordinateur

Client Client

servers

j = 4

10

9

60

LH* : addressingLH* : addressingLH* : addressing

j = 4

0

j = 4

1

j = 4

2

j = 3

7

j = 4

8

j = 4

9

n = 3 ; i = 3

n' = 0, i' = 0 n' = 3, i' = 2 Coordinateur

Client Client

servers

j = 4

10

9

61

LH* : addressingLH* : addressingLH* : addressing

j = 4

0

j = 4

1

j = 4

2

j = 3

7

j = 4

8

j = 4

9

n = 3 ; i = 3

n' = 0, i' = 0 n' = 3, i' = 2 Coordinateur

Client Client

servers

j = 4

10

9

62

LH* : addressingLH* : addressingLH* : addressing

j = 4

0

j = 4

1

j = 4

2

j = 3

7

j = 4

8

j = 4

9

n = 3 ; i = 3

n' = 1, i' = 3 n' = 3, i' = 2 Coordinateur

Client Client

servers

j = 4

10

9

j = 4

63

ResultResultResult

�� The distributed file can grow to even whole The distributed file can grow to even whole
Internet so that :Internet so that :
–– every insert and search are done in four every insert and search are done in four

messages (IAM included)messages (IAM included)
–– in general an insert is done in one message in general an insert is done in one message

and search in two messagesand search in two messages
–– proof in [LNS 93]proof in [LNS 93]

64

10,000 inserts

Global cost

Client's cost

65

66

67

Inserts by two clients

68

Parallel QueriesParallel QueriesParallel Queries
�� A query A query QQ for all buckets of file for all buckets of file FF with with

independent local executionsindependent local executions
–– everyevery buckets should get buckets should get Q Q exactly onceexactly once

�� The basis for function shippingThe basis for function shipping
–– fundamental for highfundamental for high--perfperf. DBMS. DBMS applappl..

�� Send Mode :Send Mode :
–– multicastmulticast

»» not always possible or convenientnot always possible or convenient
–– unicastunicast

»» client may not know all the serversclient may not know all the servers
»» severs have to forward the querysevers have to forward the query

–– how ??how ??

Image

File

Q

69

LH* Algorithm for Parallel Queries
(unicast)

LH* Algorithm for LH* Algorithm for Parallel QueriesParallel Queries
((unicastunicast))

�� Client sends Client sends Q Q to every bucket to every bucket a a in the imagein the image
�� The message with The message with QQ has the has the message level message level jj' :' :

–– initialy initialy j' =j' = i' i' if if n' n' ≤=≤=α=<==α=<==22i'i' elseelse j' =j' = i' + i' + 11
–– bucket bucket a a (of level (of level j j) copies) copies Q Q to all its children using to all its children using

thethe algalg. :. :
while while j' j' < < j j dodo

j' j' := := j' j' + 1+ 1
forward (forward (QQ, , j' j') à case) à case a a + 2 + 2 j' j' -- 1 1 ;;

endwhileendwhile
�� Prove it !Prove it !

70

Termination of Parallel Query
(multicast or unicast)

Termination of Termination of Parallel QueryParallel Query
(multicast or(multicast or unicastunicast))

�� How client How client C C knows that last reply came ?knows that last reply came ?
�� Deterministic Solution (expensive)Deterministic Solution (expensive)

–– Every bucket sends its Every bucket sends its j, m j, m and selected records if anyand selected records if any
»» m m is its (logical) addressis its (logical) address

–– The client terminates when it has every The client terminates when it has every mm fullfilingfullfiling the the
condition ;condition ;

»» m = m = 0,1..., 2 0,1..., 2 i i + n + n wherewhere
–– i i = min (= min (jj)) and and n n = min (= min (mm) where) where j = i j = i

i+1 i i+1
n

71

Termination of Parallel Query
(multicast or unicast)

Termination of Termination of Parallel QueryParallel Query
(multicast or(multicast or unicastunicast))

�� Probabilistic Termination (may need less messaging)Probabilistic Termination (may need less messaging)
–– all and only buckets with selected records replyall and only buckets with selected records reply
–– after each reply after each reply CC reinitialisesreinitialises a timea time--out out TT
–– C C terminates when terminates when T T expiresexpires

�� Practical choice of Practical choice of T is T is network and query dependentnetwork and query dependent
–– ex. 5 times Ethernetex. 5 times Ethernet everageeverage retry timeretry time

»» 11--22 msecmsec ??
–– experiments neededexperiments needed

�� Which termination is finally more useful in practice ?Which termination is finally more useful in practice ?
–– an open probleman open problem

72

LH* variantsLH* variantsLH* variants

�� With/without load (factor) controlWith/without load (factor) control
�� With/without the (split) coordinatorWith/without the (split) coordinator

–– the former one was discussedthe former one was discussed
–– the latter one is a tokenthe latter one is a token--passing schemapassing schema

»» bucket with the token is next to splitbucket with the token is next to split
–– if an insert occurs, and file overload is guessedif an insert occurs, and file overload is guessed

–– severalseveral algsalgs. for the decision. for the decision
–– use cascading splitsuse cascading splits

73

Load factor for uncontrolled splitting

74

Load factor for different load control strategies and threshold t = 0.8

75

76

LH* for switched multicomputersLH* for LH* for switchedswitched multicomputersmulticomputers

�� LH*LH*LHLH
–– implemented onimplemented on Parsytec Parsytec machinemachine

»» 32 Power PCs32 Power PCs
»» 2 GB of RAM (128 GB / CPU)2 GB of RAM (128 GB / CPU)

–– uses uses
»» LH for the bucket managementLH for the bucket management
»» conurrentconurrent LH* splitting (described later on)LH* splitting (described later on)

–– access times : < 1 msaccess times : < 1 ms
�� Presented at EDBTPresented at EDBT--9696

77

LH* with presplittingLH* withLH* with presplittingpresplitting

�� (Pre)splits are done "internally" immediately when an (Pre)splits are done "internally" immediately when an
overflow occursoverflow occurs

�� Become visible to clients, only when LH* split should be Become visible to clients, only when LH* split should be
normally performednormally performed

�� AdvantagesAdvantages
–– less overflows on sitesless overflows on sites
–– parallel splitsparallel splits

�� DrawbacksDrawbacks
–– Load factorLoad factor
–– Possibly longerPossibly longer forwardingsforwardings

�� Analysis remains to be doneAnalysis remains to be done

78

LH* with concurrent splittingLH* with concurrent splittingLH* with concurrent splitting

�� Inserts and searches can be done Inserts and searches can be done
concurrently with the splitting in progressconcurrently with the splitting in progress
–– used by LH*used by LH*LHLH

�� AdvantagesAdvantages
–– obviousobvious
–– and see EDBTand see EDBT--9696

�� DrawbacksDrawbacks
–– ++ algalg. complexity. complexity

79

Research FrontierResearch FrontierResearch Frontier
�� Actual implementationActual implementation

–– the SDDS protocolsthe SDDS protocols
»» Reuse the MS CFIS protocolReuse the MS CFIS protocol
»» + record types, forwarding, splitting,+ record types, forwarding, splitting, IAMsIAMs......

–– system architecturesystem architecture
»» client, server, sockets, UDP, TCP/IP, NT, Unix...client, server, sockets, UDP, TCP/IP, NT, Unix...
»» ThreadsThreads

�� Actual performanceActual performance
»» 250 us per search250 us per search

–– 1 KB records, 1001 KB records, 100 mb AnyLanmb AnyLan EthernetEthernet
–– 40 times faster than a disk40 times faster than a disk
–– e.g. response time of a join improves from 1m to 1.5 s.e.g. response time of a join improves from 1m to 1.5 s.

80

Research FrontierResearch FrontierResearch Frontier
�� Use within a DBMS Use within a DBMS

»» scalable AMOS, DB2 Parallel, Accessscalable AMOS, DB2 Parallel, Access
–– replace the traditional disk access methodsreplace the traditional disk access methods

»» DBMS is the single SDDS clientDBMS is the single SDDS client
–– LH* and perhaps other SDDSsLH* and perhaps other SDDSs

–– use function shippinguse function shipping
–– use from multiple distributed SDDS clientsuse from multiple distributed SDDS clients

»» concurrency, transactions, recovery...concurrency, transactions, recovery...

�� Other applicationsOther applications
–– A scalable WEB server (like INKTOMI)A scalable WEB server (like INKTOMI)

81

TraditionalTraditionalTraditional

DBMSDBMS

FMSFMS

82

SDDS 1st stageSDDS 1st stageSDDS 1st stage

DBMSDBMS

S S SS

Client

40 - 80 times
faster record
access

Memory
mapped
files

83

SDDS 2nd stageSDDS 2nd stageSDDS 2nd stage

DBMSDBMS

S S SS

Client

40 - 80 times
faster record
access

n times
faster
non-key
search

84

SDDS 3rd stageSDDS 3rd stageSDDS 3rd stage

DBMSDBMS

S S SS

Client

DBMSDBMS

S

Client

40 - 80 times
faster record
access

n times
faster
non-key
search

larger files
higher
throughput

85

ConclusionConclusionConclusion

�� Since their inception, in 1993, SDDS were Since their inception, in 1993, SDDS were
subject to important research effortsubject to important research effort

�� In a few years, several schemes appearedIn a few years, several schemes appeared
–– with the basic functions of the traditional fileswith the basic functions of the traditional files

»» hash, primary key ordered, multihash, primary key ordered, multi--attribute kattribute k--d accessd access

–– providing for much faster and larger filesproviding for much faster and larger files
–– confirmingconfirming initalinital expectationsexpectations

86

Future workFuture workFuture work
�� Deeper analysisDeeper analysis

–– formal methods, simulations & experimentsformal methods, simulations & experiments
�� Prototype implementationPrototype implementation

–– SDDS protocol (onSDDS protocol (on--going in Paris 9)going in Paris 9)
�� New schemesNew schemes

–– HighHigh--Availability & SecurityAvailability & Security
–– R* R* -- trees ?trees ?

�� Killer appsKiller apps
–– large storage server & object serverslarge storage server & object servers
–– objectobject--relational databasesrelational databases

»» Schneider, D & al (COMADSchneider, D & al (COMAD--94)94)
–– video serversvideo servers
–– realreal--timetime
–– HP scientific data processingHP scientific data processing

87

END
(Part 1)
ENDEND
(Part 1)(Part 1)

Thank you for your attentionThank you for your attention
Witold Litwin
litwin@dauphine.fr
wlitwin@cs.berkeley.edu

88

89

Scalable Distributed
Data Structures

Part 2

Scalable Distributed Scalable Distributed
Data StructuresData Structures

Part 2Part 2

Witold LitwinWitold Litwin
Paris 9Paris 9

litwinlitwin@cid5.@cid5.etudetud.dauphine..dauphine.frfr

90

High-availability LH* schemesHighHigh--availability LH* schemesavailability LH* schemes
�� In a large multicomputer, it is unlikely that all In a large multicomputer, it is unlikely that all

servers are upservers are up
�� Consider the probability that a bucket is up is 99 % Consider the probability that a bucket is up is 99 %

–– bucket is unavailable 3 days per yearbucket is unavailable 3 days per year
�� One stores every key in 1 bucket One stores every key in 1 bucket

–– case of typical SDDSs, LH* includedcase of typical SDDSs, LH* included
�� Probability that Probability that nn--bucket file is entirely up isbucket file is entirely up is

»» 37 % for 37 % for n = n = 100100
»» 0 % for 0 % for n = n = 10001000

91

High-availability LH* schemesHighHigh--availability LH* schemesavailability LH* schemes

�� Using 2 buckets to store a key, one may Using 2 buckets to store a key, one may
expect :expect :
–– 99 % for 99 % for n = n = 100100
–– 91 % for 91 % for n n = 1000= 1000

�� High availability SDDS High availability SDDS
–– make sensemake sense
–– are the only way to reliable large SDDS filesare the only way to reliable large SDDS files

92

High-availability LH* schemesHighHigh--availability LH* schemesavailability LH* schemes
�� HighHigh--availability LH* schemes keep data availability LH* schemes keep data

available despite server failuresavailable despite server failures
–– any single server failureany single server failure
–– most of two server failuresmost of two server failures
–– some catastrophic failuressome catastrophic failures

�� Three types of schemes are currently knownThree types of schemes are currently known
–– mirroringmirroring
–– stripingstriping
–– groupinggrouping

93

High-availability LH* schemesHighHigh--availability LH* schemesavailability LH* schemes

�� There are two files called There are two files called mirrorsmirrors
�� Every insert propagates to bothEvery insert propagates to both

–– splits are nevertheless autonomoussplits are nevertheless autonomous
�� Every search is directed towards one of the mirrorsEvery search is directed towards one of the mirrors

–– thethe primaryprimary mirror for the corresponding clientmirror for the corresponding client
�� If a bucket failure is detected, the spare is produced If a bucket failure is detected, the spare is produced

instantlyinstantly at some siteat some site
–– the storage for failed bucket is reclaimedthe storage for failed bucket is reclaimed
–– it is allocated to another bucket when again availableit is allocated to another bucket when again available

94

High-availability LH* schemesHighHigh--availability LH* schemesavailability LH* schemes

�� Two types of LH* schemes with mirroring Two types of LH* schemes with mirroring
appearappear

�� StructurallyStructurally--alike (SA) mirrorsalike (SA) mirrors
–– same file parameterssame file parameters

»» keys are presumably at the same bucketskeys are presumably at the same buckets

�� StructurallyStructurally--dissimilar (SD) mirrorsdissimilar (SD) mirrors
»» keys are presumably at different bucketskeys are presumably at different buckets

–– loosely coupled = same LHloosely coupled = same LH--functions functions hhii

–– minimally coupled = different LHminimally coupled = different LH--functions functions hhii

95

LH* with mirroringLH* with mirroringLH* with mirroring

2

••••••••

10 6 2

••••••••

10 6

2

••••••••

10 6

••••••••

210 6

2

••••

10 6

••••

987 12

2

•

1

•

0

•

6

•

98

••

7

(a)

(b)

(c)

F1 F2b = 8 b = 8

b = 4

b = 6

SA-mirrors

SD-mirrors

96

�� SASA--mirrorsmirrors
–– most efficient for access and spare productionmost efficient for access and spare production
–– but max loss in the case of twobut max loss in the case of two--bucket failurebucket failure

�� LooselyLoosely--coupled SDcoupled SD--mirrorsmirrors
–– less efficient for access and spare productionless efficient for access and spare production
–– lesser loss of data for a twolesser loss of data for a two--bucket failurebucket failure

�� MinimallyMinimally--coupled SDcoupled SD--mirrorsmirrors
–– least efficient for access and spare productionleast efficient for access and spare production
–– min. loss for a twomin. loss for a two--bucket failurebucket failure

LH* with mirroringLH* with mirroringLH* with mirroring

97

Some design issuesSome design issuesSome design issues

�� Spare production algorithmSpare production algorithm
�� Propagating the spare address to the clientPropagating the spare address to the client
�� Forwarding in the presence of failureForwarding in the presence of failure
�� Discussion in :Discussion in :

–– HighHigh--Availability LH* Schemes with Mirroring. Availability LH* Schemes with Mirroring.
W. Litwin, M.W. Litwin, M.--A. Neimat. A. Neimat. COOPISCOOPIS--96, Brussels96, Brussels

98

LH* with striping
(LH* arrays)

LH* with stripingLH* with striping
(LH* arrays)(LH* arrays)

�� HighHigh--availability through striping of a availability through striping of a
record among several LH* filesrecord among several LH* files
–– as for RAID (disk array) schemesas for RAID (disk array) schemes
–– but scalable to as many sites as neededbut scalable to as many sites as needed

�� Less storage than for LH* with mirroringLess storage than for LH* with mirroring
�� But less efficient for insert and searchBut less efficient for insert and search

–– more messagingmore messaging
»» although using shorter messagesalthough using shorter messages

99

53 011011001110........0101110

LH*s client

53 0001.... 53 1101.... 53 1110.... 53 0010....

Parity
segment

R

s1
s2 s3

s4

LH*SLH*LH*SS

100

�� Spare segments are produced when failures Spare segments are produced when failures
are detectedare detected

�� Segment file schemes are as for LH* with Segment file schemes are as for LH* with
mirroringmirroring
–– SASA--segment filessegment files

»» ++ perfperf. pour. pour l'adressagel'adressage,, mais mais -- perfperf. pour la. pour la sécuritésécurité

–– SDSD--segment filessegment files
�� Performance analysis in detail remains to be Performance analysis in detail remains to be

donedone

LH*SLH*LH*SS

101

VariantesVariantesVariantes

�� Segmentation levelSegmentation level
–– bitbit

»» best securitybest security
–– meaningless singlemeaningless single--site datasite data
–– meaningless content of a messagemeaningless content of a message

–– blockblock
»» less CPU time for the segmentationless CPU time for the segmentation

–– attributeattribute
»» selective access to segments becomes possibleselective access to segments becomes possible
»» fastest nonfastest non--key searchkey search

102

LH*gLH*gLH*g
�� Avoids stripingAvoids striping

–– to improve nonto improve non--key search timekey search time
–– keeping about the same storage requirements keeping about the same storage requirements

for the filefor the file
�� Uses Uses grouping grouping of of k k records insteadrecords instead

–– group members remain group members remain alwaysalways in different in different
bucketsbuckets

»» despite the splits and file growthdespite the splits and file growth

�� Allows for highAllows for high--availability availability on demandon demand
–– without restructuring the original LH* filewithout restructuring the original LH* file

103

LH*gLH*gLH*g

non-key datagc parity bitsckc1g

Parity recordPrimary record

Primary
LH* file

Parity
LH* file

104

LH*gLH*gLH*g

1,1,33,..
0,5,3,..
0,4,15,23..
0,3,21.22,..
0,2,30,31,32,..
0,1,12,16,59,..

0,5,3,..
0,4,15,..
0,3,21.22,..
0,2,30,31,32,..
0,1,12,16,59,..

32,0,2,..
59,0,1,..

22,0,3,..
31,0,2,..
16,0,1,..

15,0,4,..
21,0,3,..
30,0,2,..
12,0,1,..

33,1,1,..
3,0,5,..
15,0,4,..
21,0,3,..

23,0,4,..
38,0,3,..
32,0,2,..
59,0,1,..

22,0,3,..
31,0,2,..
16,0,1,..

30,0,2,..
12,0,1,..

3,0,5,..

210

0320 1

0

1,1,33,..
0,5,3,..
0,3,21.22,..
0,1,12,16,59,..

0,6,42,..
0,4,15,23..
0,2,30,31,32,..

33,1,1,..
3,0,5,..
15,0,4,..
21,0,3,..

23,0,4,..
38,0,3,..
32,0,2,..
59,0,1,..

22,0,3,..
31,0,2,..
16,0,1,..

42,0,6,..
30,0,2,..
12,0,1,..

10320 1

(c)

(b)

(a)

Evolution of an LH*g file before 1st split (a),
and after a few more inserts, (b), (c).

Evolution of an LH*g file before 1st split (a),
and after a few more inserts, (b), (c).

Group size
k = 3

105

LH*gLH*gLH*g

�� If a primary or parity bucket failsIf a primary or parity bucket fails
–– the hotthe hot--spare can always be produced from the spare can always be produced from the

group members that are still alivegroup members that are still alive
�� If more than one group member failsIf more than one group member fails

–– then there is data lossthen there is data loss

�� Unless the parity file has more extensive Unless the parity file has more extensive
datadata
–– e.g. Hamming codese.g. Hamming codes

106

Other hash SDDSsOther hash SDDSsOther hash SDDSs

�� DDH (B. Devine, FODODDH (B. Devine, FODO--94)94)
–– uses Extensible Hash as the kerneluses Extensible Hash as the kernel
–– clients have EH imagesclients have EH images
–– less overflows less overflows
–– moremore forwardingsforwardings

�� BreitbartBreitbart & al (ACM& al (ACM--SigmodSigmod--94)94)
–– less overflows & better loadless overflows & better load
–– moremore forwardingsforwardings

107

RP* schemesRP* schemesRP* schemes

�� Produce 1Produce 1--d ordered filesd ordered files
–– for range searchfor range search

�� Uses mUses m--aryary treestrees
–– like a Blike a B--treetree

�� Efficiently supports range queriesEfficiently supports range queries
–– LH* also supports range queriesLH* also supports range queries

»» but less efficientlybut less efficiently

�� Consists of the family of three schemesConsists of the family of three schemes
–– RP*RP*N N RP*RP*C C and RP*and RP*SS

108

Fig. 1 RP* design trade-offs

RP*N

RP*C

RP*S

No index all multicast

+ client index limited multicast

+ servers index optional multicast

RP* schemesRP* schemesRP* schemes

109

∞
−∞

the
of
and

to
a

−∞

of
and

∞
the

of

to
a

of

−∞

of

and

∞

the

of

to

a

of

in

that

is

−∞

and

∞

the
to

a

of

in

that
of

in

is
of
in

−∞

and

∞

the
to

a

of

in

that

of

in

it

of
in

i

is

−∞

and

∞

the
to

a

of

that

of

is
of
in

i
in

infor

it

RP* file expansion

for

for

for

0 1 2 3

0 0

0 0

0

1

1

1

1 2

2

110

RP* Range Query TerminationRP* Range Query TerminationRP* Range Query Termination

�� TimeTime--outout
�� DeterministicDeterministic

–– Each server addressed by Each server addressed by Q Q sends back at least sends back at least
its current rangeits current range

–– The client performs the union The client performs the union U U of all resultsof all results
–– It terminates when It terminates when U U covers covers QQ

111

RP*c client imageRP*c client imageRP*c client image
0 ∞

0 for * in 2 of * =∞==

0 for * in 2 of 1 =∞==

0 for 3 in 2 of 1 =∞==

Evolution of RP* client image after searches for keys
.

c

T0

T1

T2

T3

it, that, in

0
-=
==

=∞∞∞∞
for

2
in
of

IAMs

1
of
∞∞∞∞

3
for
in

112

RP*sRP*sRP*s

.

A n R P* file w ith (a) 2 -leve l ke rne l, and

(b) 3 -level k erne l
s

0 1 2 3 4

aa

and

th e s e

the
th e se

a

of

th a t

of
is

of
in

i
in

in

it
for

for

a a
for
−∞

∞

th is

th es e

to

a

in
==

2 of 1 these 4 =b

a i n bc

c−∞==a in 0 f o r 3c ∞

∞ *−∞== (b)

a

and

∞

the
to

a

of

that

of

is

of
in

i
in

in

it
for

for

0 1 2 3

0 fo r 3 in 2 of 1 ==

a
for
−∞

aa

−∞a ∞ (a)

Distr.
Index
root

Distr.
Index
root

Distr.
Index
page

Distr.
Index
page

IAM =
traversed pages

113

m-net h-net g-net
10 Mb/s 100 Mb/s 1 Gb/s

ti 1.061 ms 161 µs 71 µs
ts 1.176 ms 186 µs 87 µs
tr 10.141 ms 1.061 ms 152 µs
tg 15.585 ms 1.555 ms 585 µs
tb-i 1010 ms 100.06 ms 10.07 ms
ti, t 1.010 ms 110 µs 20 µs
ts, t 1.120 ms 130 µs 31µs

si 965 o/s 7352 o/s 21739 o/s
si, t 990 o/s 9991 o/s 50000 o/s
%CPU 3 % 19 % 57 %
ss 872 o/s 6410 o/s 17544 o/s
ss, t 893 o/s 7692 o/s 32258 o/s
%CPU 2 % 17 % 45 %

Table 1 and 2. Elapsed times and throughputs of a

RP*N
RP*N

drawback
of
multicasting

114

Insert cost

1

1.05

1.1

1.15

1.2

1.25

0 500 1000 1500 2000

Search cost
N

um
be

r o
f m

es
sa

ge
s

1.99

2.01

2.03

2.05

2.07

2.09

0 500 1000 1500 2000

Rn
Rc
Rs
LH*

RP*N
RP*C

RP*S
LH*

115

116

b RP*C RP*S LH*

50 2867 22.9 8.9

100 1438 11.4 8.2

250 543 5.9 6.8

500 258 3.1 6.4

1000 127 1.5 5.7

2000 63 1.0 5.2

Number of IAMs until image convergence

117

Research FrontierResearch FrontierResearch Frontier

118

Kroll & Widmayer schema
(ACM-Sigmod 94)

Kroll &Kroll & WidmayerWidmayer schemaschema
(ACM(ACM--Sigmod 94)Sigmod 94)

�� Provides for 1Provides for 1--d ordered files d ordered files
–– practical alternative to RP* schemespractical alternative to RP* schemes

�� Efficiently supports range queriesEfficiently supports range queries
�� Uses a paged distributed binary treeUses a paged distributed binary tree

–– can get unbalancedcan get unbalanced

119

k-RP*kk--RP*RP*
�� Provides forProvides for multiattributemultiattribute (k(k--d) searchd) search

–– key searchkey search
–– partial match and range searchpartial match and range search
–– candidate key searchcandidate key search

»» Orders of magnitude better searchOrders of magnitude better search perfperf. than . than
traditional onestraditional ones

�� Uses Uses
–– a paged distributed ka paged distributed k--d tree index on the serversd tree index on the servers
–– partial kpartial k--d trees on the clientsd trees on the clients

120

Access performance
(case study)

Access performanceAccess performance
(case study)(case study)

�� Three queries to a 400 MB, 4GB and a 40 GB fileThree queries to a 400 MB, 4GB and a 40 GB file
–– Q1 Q1 -- A range query, which selects 1% of the fileA range query, which selects 1% of the file
–– Q2 Q2 -- Query Q1 and an additional predicate on nonQuery Q1 and an additional predicate on non--key attributes key attributes

selecting 0.5% of the records selected by Q1selecting 0.5% of the records selected by Q1
–– Q3 Q3 -- A partial match x0 = c0 successful search in a 3A partial match x0 = c0 successful search in a 3--d file, where d file, where

x0 is a candidate keyx0 is a candidate key

�� Response time is computed for:Response time is computed for:
–– a traditional disk filea traditional disk file
–– a ka k--RP* file on a 10 Mb/s net RP* file on a 10 Mb/s net
–– a ka k--RP* file on a 1RP* file on a 1 GbGb/s net/s net

�� Factor Factor S S is the corresponding speedis the corresponding speed--upup
–– reaches 7 orders of magnitude reaches 7 orders of magnitude

121

122

dPi-treedPidPi--treetree

�� Side pointers between the leavesSide pointers between the leaves
–– traversed when an addressing error occurstraversed when an addressing error occurs

»» a limit can be seta limit can be set--up to guard against the worst caseup to guard against the worst case

�� Base index at some serverBase index at some server
�� Client images tree built pathClient images tree built path--byby--pathpath

–– from base index or through IAMsfrom base index or through IAMs
»» called correction messagescalled correction messages

�� Basic performance similar to kBasic performance similar to k--RP* ?RP* ?
–– Analysis pendingAnalysis pending

123

ConclusionConclusionConclusion

�� Since their inception, in 1993, SDDS were Since their inception, in 1993, SDDS were
subject to important research effortsubject to important research effort

�� In a few years, several schemes appearedIn a few years, several schemes appeared
–– with the basic functions of the traditional fileswith the basic functions of the traditional files

»» hash, primary key ordered, multihash, primary key ordered, multi--attribute kattribute k--d accessd access

–– providing for much faster and larger filesproviding for much faster and larger files
–– confirmingconfirming initalinital expectationsexpectations

124

Future workFuture workFuture work
�� Deeper analysisDeeper analysis

–– formal methods, simulations & experimentsformal methods, simulations & experiments

�� Prototype implementationPrototype implementation
–– SDDS protocol (onSDDS protocol (on--going in Paris 9)going in Paris 9)

�� New schemesNew schemes
–– HighHigh--Availability & SecurityAvailability & Security
–– R* R* -- trees ?trees ?

�� Killer appsKiller apps
–– large storage server & object serverslarge storage server & object servers
–– objectobject--relational databasesrelational databases

»» Schneider, D & al (COMADSchneider, D & al (COMAD--94)94)
–– video serversvideo servers
–– realreal--timetime
–– HP scientific data processingHP scientific data processing

125

ENDENDEND

Thank you for your attentionThank you for your attention
Witold Litwin
litwin@dauphine.fr
wlitwin@cs.berkeley.edu

126

