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PlanPlanPlan

�� What are SDDSs ?What are SDDSs ?
�� Why they are needed ?Why they are needed ?
�� Where are we in 1996 ?Where are we in 1996 ?

–– Existing SDDSsExisting SDDSs
–– Gaps & OnGaps & On--going workgoing work

�� ConclusionConclusion
–– Future workFuture work
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What is an SDDSWhat is an SDDSWhat is an SDDS

�� A new type of data structureA new type of data structure
–– Specifically forSpecifically for multicomputersmulticomputers

�� Designed  for  Designed  for  highhigh--performanceperformance files :files :
–– horizontalhorizontal scalability to very large sizesscalability to very large sizes

»» larger than  any singlelarger than  any single--site filesite file
–– parallel and distributed processing parallel and distributed processing 

»» especially in  (distributed) RAMespecially in  (distributed) RAM
–– access time better than for any disk fileaccess time better than for any disk file

–– 200 200 µµs under NT (100 Mb/s net, 1KB records)s under NT (100 Mb/s net, 1KB records)

–– distributed autonomous clientsdistributed autonomous clients
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Killer appsKiller appsKiller apps
�� Storage serversStorage servers

–– software & hardware scalable & HA serverssoftware & hardware scalable & HA servers
–– commodity component based  commodity component based  

»» DoDo--ItIt--YourselfYourself--RAIDRAID

�� Object storage serversObject storage servers
�� ObjectObject--relational  databasesrelational  databases
�� WEB serversWEB servers

–– like like InktomiInktomi
�� Video serversVideo servers
�� RealReal--time systemstime systems
�� HP Scientific data processingHP Scientific data processing
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MulticomputersMulticomputersMulticomputers
�� A collection of loosely coupled computersA collection of loosely coupled computers

–– common and/or preexisting hardwarecommon and/or preexisting hardware
–– share nothing architectureshare nothing architecture
–– message passing through message passing through highhigh--speedspeed net (net (≥==10=≥==10=Mb/s)Mb/s)

�� NetworkNetwork multicomputersmulticomputers
–– use general purpose netsuse general purpose nets

»» LANs: Ethernet, Token Ring, Fast Ethernet, SCI, FDDI...LANs: Ethernet, Token Ring, Fast Ethernet, SCI, FDDI...
»» WANsWANs: ATM...: ATM...

�� SwitchedSwitched multicomputersmulticomputers
–– use a bus, or a switchuse a bus, or a switch

»» e.g., IBMe.g., IBM--SP2, SP2, ParsytecParsytec
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Client Server 

Network multicomputer
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Why multicomputers ?WhyWhy multicomputersmulticomputers ??
�� Potentially unbeatable pricePotentially unbeatable price--performance ratioperformance ratio

–– Much cheaper and more powerful than supercomputersMuch cheaper and more powerful than supercomputers
»» 15001500 WSsWSs at HPL with 500+  GB of RAM  &at HPL with 500+  GB of RAM  & TBsTBs of disksof disks

�� Potential computing powerPotential computing power
–– file sizefile size
–– access and processing timeaccess and processing time
–– throughputthroughput

�� For more pro & cons :For more pro & cons :
–– Bill Gates at Microsoft Scalability DayBill Gates at Microsoft Scalability Day
–– NOW project (UC Berkeley)NOW project (UC Berkeley)
–– TanenbaumTanenbaum: "Distributed Operating Systems", Prentice Hall, 1995: "Distributed Operating Systems", Prentice Hall, 1995
–– www.www.microoftmicrooft.com  White Papers from Business.com  White Papers from Business SystSyst. Div. . Div. 
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Why SDDSsWhy SDDSsWhy SDDSs

�� Multicomputers need data structures and Multicomputers need data structures and 
file systemsfile systems

�� Trivial extensions of traditional structures Trivial extensions of traditional structures 
are not bestare not best

�� hothot--spotsspots
�� scalabilityscalability
�� parallel queriesparallel queries
�� distributed and autonomous clientsdistributed and autonomous clients
�� distributed RAM & distance to datadistributed RAM & distance to data
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Economy etc.Economy etc.Economy etc.
�� Price of RAM storage dropped in 1996 Price of RAM storage dropped in 1996 

almost almost 1010 times times !!
–– $10 for 16 MB (production price)$10 for 16 MB (production price)
–– $30$30--40 for 16 MB RAM (end user price)40 for 16 MB RAM (end user price)

»» $47  for 32 MB (Fry’s price, Aug. 1997)$47  for 32 MB (Fry’s price, Aug. 1997)

–– $1000 for 1GB$1000 for 1GB
�� RAM storage is eternal (no mech. parts)RAM storage is eternal (no mech. parts)
�� RAM storage can grow incrementallyRAM storage can grow incrementally
�� NT plans for 64b addressing for VLMNT plans for 64b addressing for VLM
�� MS plans for VLMMS plans for VLM--DBMSDBMS
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What is an SDDSWhat is an SDDSWhat is an SDDS
�� A A scalablescalable data structure where:data structure where:
☞☞ Data are on Data are on serversservers

–– always available for accessalways available for access

☞☞ Queries come from autonomous Queries come from autonomous clientsclients
–– available for access only on their  initiativeavailable for access only on their  initiative

☞☞ There is no centralized directoryThere is no centralized directory
☞☞ Clients may make Clients may make addressing errorsaddressing errors

»» Clients have less or more adequate Clients have less or more adequate image image of the actual file structureof the actual file structure

✌✌ Servers are able to Servers are able to forwardforward the queries to the correct addressthe queries to the correct address
–– perhaps in several messagesperhaps in several messages

☞☞ Servers may send Servers may send Image Adjustment MessagesImage Adjustment Messages
»» Clients do not make same error twiceClients do not make same error twice
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Performance measuresPerformance measuresPerformance measures

�� Storage costStorage cost
–– load factorload factor

»» same definitions as for the traditionalsame definitions as for the traditional DSsDSs

�� Access costAccess cost
�� messagingmessaging

–– number of messages (rounds)number of messages (rounds)
»» network independentnetwork independent

–– access timeaccess time
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Access performance measuresAccess performance measuresAccess performance measures

�� Query costQuery cost
–– key searchkey search

»» forwarding costforwarding cost
–– insertinsert

»» split costsplit cost
–– deletedelete

»» merge costmerge cost
–– Parallel search, range search, partial match search, bulk Parallel search, range search, partial match search, bulk 

insert... insert... 
�� Average & worstAverage & worst--case costscase costs
�� Client image convergence costClient image convergence cost
�� New or less active client costsNew or less active client costs
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LH* (A classic)LH* LH* ((A classic)A classic)

�� Allows for the primary key (OID) based hash filesAllows for the primary key (OID) based hash files
–– generalizes the LH addressing schemageneralizes the LH addressing schema

�� Load factor 70 Load factor 70 -- 90 %90 %
�� At most 2 forwarding messagesAt most 2 forwarding messages

–– regardless of the size of the fileregardless of the size of the file

�� In practice, 1 m/insert and 2 m/search on the In practice, 1 m/insert and 2 m/search on the 
averageaverage

�� 4 messages in the worst case4 messages in the worst case
�� Search time of  1 ms (10 Mb/s net), of 150 ms Search time of  1 ms (10 Mb/s net), of 150 ms 

(100 Mb/s net) and of  30 us ((100 Mb/s net) and of  30 us (GbGb/s net)/s net)
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Overview of LHOverview of LHOverview of LH
�� Extensible hash  algorithmExtensible hash  algorithm

–– used, e.g., used, e.g., 
»» Netscape browser  (100M copies)Netscape browser  (100M copies)
»» LHLH--Server  by AR (700K copies  sold)Server  by AR (700K copies  sold)

–– tought tought in most DB and DS classesin most DB and DS classes
–– address  space expandsaddress  space expands

»» to avoid overflows & access performance to avoid overflows & access performance 
deterioration deterioration 

�� the file has buckets with  capacity the file has buckets with  capacity bb >> 1>> 1
�� Hash by division Hash by division hhii : c : c --> c> c mod 2mod 2i i NN provides the address provides the address 

h (c)h (c) of  key  of  key  cc..
�� Buckets split  through the replacement of  hBuckets split  through the replacement of  hii with  with  h h ii+1 +1 ; ; i = i = 

0,1,..0,1,..
�� On the average, On the average, b/2 b/2 keys  move towards new bucketkeys  move towards new bucket
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Overview of LHOverview of LHOverview of LH

�� Basically, a split occurs when some bucket Basically, a split occurs when some bucket m m 
overflowsoverflows

�� One splits bucket One splits bucket n, n, pointed by pointer pointed by pointer nn..
–– usually usually m m ≠=≠=nn

�� nn évolueévolue : 0, 0,1, 0,1,..,2, 0,1..,3, 0,..,7, 0,..,2: 0, 0,1, 0,1,..,2, 0,1..,3, 0,..,7, 0,..,2i i NN, 0.., 0..
�� One consequence => no  index One consequence => no  index 

–– characteristic of other EH schemescharacteristic of other EH schemes
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LH File EvolutionLH File EvolutionLH File Evolution

35
12
7
15
24

h0 ;  n = 0

N = 1
b = 4
i = 0
hh00 : c : c --> > 2200

0



38

LH File EvolutionLH File EvolutionLH File Evolution
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LH File EvolutionLH File EvolutionLH File Evolution
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LH File EvolutionLH File EvolutionLH File Evolution

�� EtcEtc
–– One  starts  One  starts  hh3 3 then  then  hh4 4 ......

�� The file can expand as much as needed The file can expand as much as needed 
–– without too many overflows everwithout too many overflows ever
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Addressing AlgorithmAddressing AlgorithmAddressing Algorithm

a <a <-- h (i, c) h (i, c) 
if if n n = 0= 0 alorsalors exit exit 
elseelse

if  a < n then a <if  a < n then a <-- h (i+1, c) ;h (i+1, c) ;
endend
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LH*LH*LH*

�� Property of  LH :Property of  LH :
–– Given Given j = i j = i or  or  j = i j = i + 1, key + 1, key c c is in bucket is in bucket mm iffiff

hhjj ((cc) = ) = m ; j = im ; j = i ouou j = i j = i + 1+ 1
»» Verify yourselfVerify yourself

�� Ideas for  LH* :Ideas for  LH* :
–– LHLH addresingaddresing rule = global rule for LH* filerule = global rule for LH* file
–– every bucket at  a serverevery bucket at  a server
–– bucket level  bucket level  j j in the header in the header 
–– Check the LH property when the key comes form a  Check the LH property when the key comes form a  

clientclient
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LH* : file structure LH* : file structure LH* : file structure 
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LH* : file structureLH* : file structureLH* : file structure

j = 4

0

j = 4

1

j = 3

2

j = 3

7

j = 4

8

j = 4

9

n = 2 ; i = 3

n' = 0, i' = 0 n' = 3, i' = 2 Coordinator

Client Client 

servers



50

LH* : splitLH* : splitLH* : split
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LH* : splitLH* : splitLH* : split

j = 4

0

j = 4

1

j = 3

2

j = 3

7

j = 4

8

j = 4

9

n = 2 ; i = 3

n' = 0, i' = 0 n' = 3, i' = 2 Coordinator

Client Client 

servers



52

LH* : splitLH* : splitLH* : split
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LH* Addressing  SchemaLH* Addressing  SchemaLH* Addressing  Schema

�� Client Client 
–– computes the LH address computes the LH address m m of  of  c c using its image, using its image, 
–– send send c c to bucket  to bucket  mm

�� ServerServer
–– Server Server a a getting key getting key cc, , a a = = m m in particular,in particular, computes :computes :
a'  :=a'  := hhjj (c) ;(c) ;
if  if  a' = a a' = a thenthen accept accept c ;c ;
else else a'' :=a'' := hhjj -- 11 (c) ;(c) ;

if if a'' > a  a'' > a  and  and  a'' a'' < < a' a' then then a' a' := := a''  ; a''  ; 
send  send  c c to bucket  to bucket  a' ;a' ;
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LH* Addressing  SchemaLH* Addressing  SchemaLH* Addressing  Schema

�� Client Client 
–– computes the LH address computes the LH address m m of  of  c c using its image, using its image, 
–– send send c c to bucket  to bucket  mm

�� ServerServer
–– Server Server a a getting key getting key cc, , a a = = m m in particular,in particular, computes :computes :
a'  :=a'  := hhjj (c) ;(c) ;
if  if  a' = a a' = a thenthen accept accept c ;c ;
else else a'' :=a'' := hhjj -- 11 (c) ;(c) ;

if if a'' > a  a'' > a  and  and  a'' a'' < < a' a' then then a' a' := := a''  ; a''  ; 
send  send  c c to bucket  to bucket  a' ;a' ;

� See  [LNS93] for the (long) proof 

Simple ?
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Client Image AdjustementClient ImageClient Image AdjustementAdjustement
�� The IAM consists of address The IAM consists of address a a where the client sent where the client sent c c and and 

of  of  j j ((aa))
–– i'  i'  is  presumed is  presumed i i in client's in client's image.image.
–– n' n' isis preumedpreumed value of pointer value of pointer n n in client's in client's image.image.
–– initially, initially, i' i' = = n' n' = 0.= 0.

if    if    j j > > i' i' then  then  i'  i'  :=  :=  j j -- 1, 1, n' n' :=  :=  a +a +1 ;  1 ;  
if if n' n' ≥=≥=2^2^i'    i'    then    then    n' n' = 0,   = 0,   i'  i'  :=   :=   i' i' +1 ;+1 ;

�� TheThe algoalgo.. garantees  garantees  that client image is within the  file that client image is within the  file 
[LNS93][LNS93]
–– if there is no file  contractions  (merge)if there is no file  contractions  (merge)
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LH* : addressingLH* : addressingLH* : addressing
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LH* : addressingLH* : addressingLH* : addressing
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LH* : addressingLH* : addressingLH* : addressing
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LH* : addressingLH* : addressingLH* : addressing
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LH* : addressingLH* : addressingLH* : addressing
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LH* : addressingLH* : addressingLH* : addressing
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LH* : addressingLH* : addressingLH* : addressing
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ResultResultResult

�� The distributed file can grow to even whole The distributed file can grow to even whole 
Internet so that :Internet so that :
–– every insert and  search are done in four every insert and  search are done in four 

messages (IAM included)messages (IAM included)
–– in general  an insert is done  in one message in general  an insert is done  in one message 

and search  in two messagesand search  in two messages
–– proof in [LNS 93]proof in [LNS 93]
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10,000 inserts
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Inserts by two clients
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Parallel QueriesParallel QueriesParallel Queries
�� A query A query QQ for all buckets of file for all buckets of file FF with with 

independent local  executionsindependent local  executions
–– everyevery buckets should get  buckets should get  Q Q exactly onceexactly once

�� The basis for function shippingThe basis for function shipping
–– fundamental for highfundamental for high--perfperf. DBMS. DBMS applappl..

�� Send Mode :Send Mode :
–– multicastmulticast

»» not always possible or convenientnot always possible or convenient
–– unicastunicast

»» client  may not know all the serversclient  may not know all the servers
»» severs have to forward the querysevers have to forward the query

–– how ??how ??

Image

File

Q
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LH* Algorithm for Parallel Queries
(unicast)

LH* Algorithm for LH* Algorithm for Parallel QueriesParallel Queries
((unicastunicast))

�� Client sends  Client sends  Q Q to every bucket to every bucket a a in the imagein the image
�� The message with The message with QQ has the has the message level message level jj' :' :

–– initialy  initialy  j' =j' = i' i' if if n' n' ≤=≤=α=<==α=<==22i'i' elseelse j' =j' = i' + i' + 11
–– bucket bucket a a (of level (of level j j )  copies )  copies Q Q to all its  children using to all its  children using 

thethe algalg. :. :
while while j' j' < < j j dodo

j' j' :=  :=  j' j' + 1+ 1
forward (forward (QQ, , j' j' ) à case ) à case a a + 2 + 2 j'  j'  -- 1 1 ;;

endwhileendwhile
�� Prove it !Prove it !
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Termination of Parallel Query
(multicast or unicast)

Termination of Termination of Parallel QueryParallel Query
(multicast or(multicast or unicastunicast))

�� How client How client C C knows  that last reply came ?knows  that last reply came ?
�� Deterministic  Solution (expensive)Deterministic  Solution (expensive)

–– Every bucket sends its Every bucket sends its j, m j, m and selected records if anyand selected records if any
»» m m is its (logical) addressis its (logical) address

–– The client terminates when it has every The client terminates when it has every mm fullfilingfullfiling the the 
condition ;condition ;

»» m = m = 0,1..., 2 0,1..., 2 i i + n + n wherewhere
–– i i = min (= min (jj)) and and n n = min (= min (mm) where ) where j = i j = i 

i+1 i i+1
n



71

Termination of Parallel Query
(multicast or unicast)

Termination of Termination of Parallel QueryParallel Query
(multicast or(multicast or unicastunicast))

�� Probabilistic Termination  ( may need less messaging)Probabilistic Termination  ( may need less messaging)
–– all and only buckets with selected records replyall and only buckets with selected records reply
–– after each reply after each reply CC reinitialisesreinitialises a timea time--out out TT
–– C C terminates when terminates when T T expiresexpires

�� Practical choice of Practical choice of T  is T  is network and query dependentnetwork and query dependent
–– ex.  5 times Ethernetex.  5 times Ethernet everageeverage retry timeretry time

»» 11--22 msecmsec ??
–– experiments neededexperiments needed

�� Which termination is finally more useful in practice ?Which termination is finally more useful in practice ?
–– an open probleman open problem
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LH* variantsLH* variantsLH* variants

�� With/without load (factor) controlWith/without load (factor) control
�� With/without the (split) coordinatorWith/without the (split) coordinator

–– the former one was discussedthe former one was discussed
–– the latter one is a tokenthe latter one is a token--passing schemapassing schema

»» bucket with the token is next to splitbucket with the token is next to split
–– if an insert occurs, and file overload is guessedif an insert occurs, and file overload is guessed

–– severalseveral algsalgs. for the decision. for the decision
–– use cascading splitsuse cascading splits
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Load factor for uncontrolled splitting



74

Load factor for different load control strategies and threshold t = 0.8 
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LH* for switched multicomputersLH* for LH* for switchedswitched multicomputersmulticomputers

�� LH*LH*LHLH
–– implemented onimplemented on Parsytec  Parsytec  machinemachine

»» 32 Power PCs32 Power PCs
»» 2 GB of RAM (128 GB / CPU)2 GB of RAM (128 GB / CPU)

–– uses uses 
»» LH for the bucket managementLH for the bucket management
»» conurrentconurrent LH* splitting (described later on)LH* splitting (described later on)

–– access times : < 1 msaccess times : < 1 ms
�� Presented at EDBTPresented at EDBT--9696
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LH* with presplittingLH* withLH* with presplittingpresplitting

�� (Pre)splits are done  "internally" immediately when an (Pre)splits are done  "internally" immediately when an 
overflow occursoverflow occurs

�� Become visible to clients, only when LH* split should be Become visible to clients, only when LH* split should be 
normally performednormally performed

�� AdvantagesAdvantages
–– less overflows on sitesless overflows on sites
–– parallel splitsparallel splits

�� DrawbacksDrawbacks
–– Load factorLoad factor
–– Possibly longerPossibly longer forwardingsforwardings

�� Analysis remains to be doneAnalysis remains to be done
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LH* with concurrent splittingLH* with concurrent splittingLH* with concurrent splitting

�� Inserts and searches can be done Inserts and searches can be done 
concurrently with the splitting in progressconcurrently with the splitting in progress
–– used by LH*used by LH*LHLH

�� AdvantagesAdvantages
–– obviousobvious
–– and see EDBTand see EDBT--9696

�� DrawbacksDrawbacks
–– ++ algalg. complexity. complexity
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Research FrontierResearch FrontierResearch Frontier
�� Actual implementationActual implementation

–– the SDDS protocolsthe SDDS protocols
»» Reuse the MS CFIS protocolReuse the MS CFIS protocol
»» + record types, forwarding, splitting,+ record types, forwarding, splitting, IAMsIAMs......

–– system architecturesystem architecture
»» client, server, sockets, UDP, TCP/IP, NT, Unix...client, server, sockets, UDP, TCP/IP, NT, Unix...
»» ThreadsThreads

�� Actual performanceActual performance
»» 250 us per search250 us per search

–– 1 KB records, 1001 KB records, 100 mb  AnyLanmb  AnyLan EthernetEthernet
–– 40 times faster than a disk40 times faster than a disk
–– e.g. response time of a join improves from 1m to 1.5 s.e.g. response time of a join improves from 1m to 1.5 s.
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Research FrontierResearch FrontierResearch Frontier
�� Use within a DBMS Use within a DBMS 

»» scalable AMOS, DB2 Parallel, Accessscalable AMOS, DB2 Parallel, Access
–– replace the traditional disk access methodsreplace the traditional disk access methods

»» DBMS is the single SDDS clientDBMS is the single SDDS client
–– LH* and perhaps other SDDSsLH* and perhaps other SDDSs

–– use function shippinguse function shipping
–– use from multiple distributed SDDS clientsuse from multiple distributed SDDS clients

»» concurrency, transactions, recovery...concurrency, transactions, recovery...

�� Other applicationsOther applications
–– A scalable WEB server (like INKTOMI)A scalable WEB server (like INKTOMI)
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SDDS 1st stageSDDS 1st stageSDDS 1st stage

DBMSDBMS

S S SS

Client

40 - 80 times 
faster record
access 

Memory
mapped
files
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SDDS  2nd  stageSDDS  2nd  stageSDDS  2nd  stage

DBMSDBMS

S S SS

Client

40 - 80 times 
faster record
access 

n times 
faster 
non-key
search
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SDDS  3rd  stageSDDS  3rd  stageSDDS  3rd  stage

DBMSDBMS

S S SS

Client

DBMSDBMS

S

Client

40 - 80 times 
faster record
access 

n times 
faster 
non-key
search

larger files
higher 
throughput
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ConclusionConclusionConclusion

�� Since their inception, in 1993, SDDS were Since their inception, in 1993, SDDS were 
subject to important research effortsubject to important research effort

�� In a few years, several schemes appearedIn a few years, several schemes appeared
–– with the basic functions of the traditional fileswith the basic functions of the traditional files

»» hash, primary key ordered, multihash, primary key ordered, multi--attribute kattribute k--d accessd access

–– providing for much faster and larger filesproviding for much faster and larger files
–– confirmingconfirming initalinital expectationsexpectations
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Future workFuture workFuture work
�� Deeper analysisDeeper analysis

–– formal methods, simulations & experimentsformal methods, simulations & experiments
�� Prototype implementationPrototype implementation

–– SDDS protocol  (onSDDS protocol  (on--going in Paris 9)going in Paris 9)
�� New schemesNew schemes

–– HighHigh--Availability & SecurityAvailability & Security
–– R* R* -- trees ?trees ?

�� Killer appsKiller apps
–– large storage server & object serverslarge storage server & object servers
–– objectobject--relational  databasesrelational  databases

»» Schneider, D & al (COMADSchneider, D & al (COMAD--94)94)
–– video serversvideo servers
–– realreal--timetime
–– HP scientific data processingHP scientific data processing



87

END
(Part 1)
ENDEND
(Part 1)(Part 1)

Thank you for your attentionThank you for your attention
Witold Litwin
litwin@dauphine.fr
wlitwin@cs.berkeley.edu
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Scalable Distributed 
Data Structures

Part 2

Scalable Distributed Scalable Distributed 
Data StructuresData Structures

Part 2Part 2

Witold LitwinWitold Litwin
Paris 9Paris 9

litwinlitwin@cid5.@cid5.etudetud.dauphine..dauphine.frfr
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High-availability LH*  schemesHighHigh--availability LH*  schemesavailability LH*  schemes
�� In a large multicomputer, it is unlikely that all In a large multicomputer, it is unlikely that all 

servers are upservers are up
�� Consider the probability that a bucket is up is 99 % Consider the probability that a bucket is up is 99 % 

–– bucket is unavailable 3 days per yearbucket is unavailable 3 days per year
�� One stores every key in 1 bucket One stores every key in 1 bucket 

–– case of typical SDDSs, LH* includedcase of typical SDDSs, LH* included
�� Probability that Probability that nn--bucket file is entirely up isbucket file is entirely up is

»» 37 % for 37 % for n = n = 100100
»» 0 % for 0 % for n = n = 10001000
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High-availability LH*  schemesHighHigh--availability LH*  schemesavailability LH*  schemes

�� Using 2 buckets to store a  key, one may Using 2 buckets to store a  key, one may 
expect :expect :
–– 99 % for 99 % for n = n = 100100
–– 91 % for 91 % for n n = 1000= 1000

�� High availability SDDS High availability SDDS 
–– make sensemake sense
–– are the only way to reliable large SDDS filesare the only way to reliable large SDDS files
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High-availability LH*  schemesHighHigh--availability LH*  schemesavailability LH*  schemes
�� HighHigh--availability LH* schemes keep data availability LH* schemes keep data 

available despite server failuresavailable despite server failures
–– any single server failureany single server failure
–– most of  two server failuresmost of  two server failures
–– some catastrophic failuressome catastrophic failures

�� Three types of schemes are currently knownThree types of schemes are currently known
–– mirroringmirroring
–– stripingstriping
–– groupinggrouping
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High-availability LH*  schemesHighHigh--availability LH*  schemesavailability LH*  schemes

�� There are two files called There are two files called mirrorsmirrors
�� Every insert propagates to bothEvery insert propagates to both

–– splits are nevertheless autonomoussplits are nevertheless autonomous
�� Every search is directed towards one of the mirrorsEvery search is directed towards one of the mirrors

–– thethe primaryprimary mirror for the corresponding clientmirror for the corresponding client
�� If a bucket failure is detected, the spare is produced If a bucket failure is detected, the spare is produced 

instantlyinstantly at some siteat some site
–– the storage for failed bucket is reclaimedthe storage for failed bucket is reclaimed
–– it is allocated to another bucket when again availableit is allocated to another bucket when again available
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High-availability LH*  schemesHighHigh--availability LH*  schemesavailability LH*  schemes

�� Two types of LH* schemes with mirroring Two types of LH* schemes with mirroring 
appearappear

�� StructurallyStructurally--alike (SA) mirrorsalike (SA) mirrors
–– same file parameterssame file parameters

»» keys are presumably at the same bucketskeys are presumably at the same buckets

�� StructurallyStructurally--dissimilar (SD) mirrorsdissimilar (SD) mirrors
»» keys are presumably at different bucketskeys are presumably at different buckets

–– loosely coupled = same LHloosely coupled = same LH--functions functions hhii

–– minimally coupled = different  LHminimally coupled = different  LH--functions functions hhii
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LH* with mirroringLH* with mirroringLH* with mirroring
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�� SASA--mirrorsmirrors
–– most efficient for access and spare productionmost efficient for access and spare production
–– but max loss in the case of twobut max loss in the case of two--bucket failurebucket failure

�� LooselyLoosely--coupled SDcoupled SD--mirrorsmirrors
–– less efficient for access and spare productionless efficient for access and spare production
–– lesser loss of data for a twolesser loss of data for a two--bucket failurebucket failure

�� MinimallyMinimally--coupled SDcoupled SD--mirrorsmirrors
–– least efficient for access and spare productionleast efficient for access and spare production
–– min. loss for a twomin. loss for a two--bucket failurebucket failure

LH* with mirroringLH* with mirroringLH* with mirroring



97

Some design issuesSome design issuesSome design issues

�� Spare production algorithmSpare production algorithm
�� Propagating the spare address to the clientPropagating the spare address to the client
�� Forwarding in the presence of failureForwarding in the presence of failure
�� Discussion in :Discussion in :

–– HighHigh--Availability LH* Schemes with Mirroring. Availability LH* Schemes with Mirroring. 
W. Litwin, M.W. Litwin, M.--A. Neimat. A. Neimat. COOPISCOOPIS--96, Brussels96, Brussels
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LH* with striping
(LH* arrays)

LH* with stripingLH* with striping
(LH* arrays)(LH* arrays)

�� HighHigh--availability through striping of a availability through striping of a 
record among several LH* filesrecord among several LH* files
–– as for RAID (disk array) schemesas for RAID (disk array) schemes
–– but scalable to as many sites as neededbut scalable to as many sites as needed

�� Less storage than for LH* with mirroringLess storage than for LH* with mirroring
�� But less efficient for insert and searchBut less efficient for insert and search

–– more messagingmore messaging
»» although using shorter messagesalthough using shorter messages



99

53 011011001110........0101110

LH*s client

53 0001.... 53 1101.... 53 1110.... 53 0010....

Parity
segment

R

s1
s2 s3

s4

LH*SLH*LH*SS
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�� Spare segments are produced when failures Spare segments are produced when failures 
are detectedare detected

�� Segment file schemes are as for LH* with Segment file schemes are as for LH* with 
mirroringmirroring
–– SASA--segment filessegment files

»» ++ perfperf. pour. pour l'adressagel'adressage,, mais  mais  -- perfperf. pour la. pour la sécuritésécurité

–– SDSD--segment filessegment files
�� Performance analysis in detail remains to be Performance analysis in detail remains to be 

donedone

LH*SLH*LH*SS
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VariantesVariantesVariantes

�� Segmentation levelSegmentation level
–– bitbit

»» best  securitybest  security
–– meaningless singlemeaningless single--site datasite data
–– meaningless content of a  messagemeaningless content of a  message

–– blockblock
»» less  CPU time for the segmentationless  CPU time for the segmentation

–– attributeattribute
»» selective access to segments becomes possibleselective access to segments becomes possible
»» fastest nonfastest non--key searchkey search
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LH*gLH*gLH*g
�� Avoids stripingAvoids striping

–– to improve nonto improve non--key search timekey search time
–– keeping about the same storage requirements keeping about the same storage requirements 

for the filefor the file
�� Uses Uses grouping grouping of of k k records insteadrecords instead

–– group members remain group members remain alwaysalways in different in different 
bucketsbuckets

»» despite the splits and file growthdespite the splits and file growth

�� Allows for highAllows for high--availability availability on demandon demand
–– without restructuring the original LH* filewithout restructuring the original LH* file
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LH*gLH*gLH*g

non-key datagc parity bitsckc1g

Parity recordPrimary record

Primary
LH* file

Parity
LH* file
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LH*gLH*gLH*g

1,1,33,..          
0,5,3,..            
0,4,15,23..      
0,3,21.22,..     
0,2,30,31,32,..
0,1,12,16,59,..

0,5,3,..            
0,4,15,..          
0,3,21.22,..     
0,2,30,31,32,..
0,1,12,16,59,..

32,0,2,..
59,0,1,..

22,0,3,..
31,0,2,..
16,0,1,..

15,0,4,..
21,0,3,..
30,0,2,..
12,0,1,..

33,1,1,..
3,0,5,..  
15,0,4,..
21,0,3,..

23,0,4,..
38,0,3,..
32,0,2,..
59,0,1,..

22,0,3,..
31,0,2,..
16,0,1,..

30,0,2,..
12,0,1,..

3,0,5,..

210

0320 1

0

1,1,33,..          
0,5,3,..            
0,3,21.22,..     
0,1,12,16,59,..

0,6,42,..          
0,4,15,23..      
0,2,30,31,32,..

33,1,1,..
3,0,5,..  
15,0,4,..
21,0,3,..

23,0,4,..
38,0,3,..
32,0,2,..
59,0,1,..

22,0,3,..
31,0,2,..
16,0,1,..

42,0,6,..
30,0,2,..
12,0,1,..

10320 1

(c)

(b)

(a)

Evolution  of an LH*g file before 1st split (a), 
and after a few more inserts, (b),  (c).

Evolution  of an LH*g file before 1st split (a), 
and after a few more inserts, (b),  (c).

Group size
k = 3
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LH*gLH*gLH*g

�� If a primary or parity bucket failsIf a primary or parity bucket fails
–– the hotthe hot--spare can always be produced from the spare can always be produced from the 

group members that are still alivegroup members that are still alive
�� If more than one group member failsIf more than one group member fails

–– then there is data lossthen there is data loss

�� Unless the parity file has more extensive Unless the parity file has more extensive 
datadata
–– e.g. Hamming codese.g. Hamming codes
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Other hash SDDSsOther hash SDDSsOther hash SDDSs

�� DDH (B. Devine, FODODDH (B. Devine, FODO--94)94)
–– uses Extensible Hash as the kerneluses Extensible Hash as the kernel
–– clients have EH imagesclients have EH images
–– less overflows less overflows 
–– moremore forwardingsforwardings

�� BreitbartBreitbart & al (ACM& al (ACM--SigmodSigmod--94)94)
–– less overflows & better loadless overflows & better load
–– moremore forwardingsforwardings
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RP* schemesRP* schemesRP* schemes

�� Produce 1Produce 1--d ordered filesd ordered files
–– for range searchfor range search

�� Uses mUses m--aryary treestrees
–– like a Blike a B--treetree

�� Efficiently supports range queriesEfficiently supports range queries
–– LH* also supports range queriesLH* also supports range queries

»» but less efficientlybut less efficiently

�� Consists of the family of three schemesConsists of the family of three schemes
–– RP*RP*N    N    RP*RP*C    C    and   RP*and   RP*SS
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Fig. 1  RP* design trade-offs

RP*N

RP*C

RP*S

No index              all multicast

+ client index     limited multicast

+ servers index  optional multicast

RP* schemesRP* schemesRP* schemes
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RP* Range Query TerminationRP* Range Query TerminationRP* Range Query Termination

�� TimeTime--outout
�� DeterministicDeterministic

–– Each server addressed by Each server addressed by Q Q sends back at least sends back at least 
its current rangeits current range

–– The client performs the union The client performs the union U U of all resultsof all results
–– It terminates when It terminates when U U covers covers QQ



111

RP*c client imageRP*c client imageRP*c client image
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RP*sRP*sRP*s
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m-net h-net g-net
10 Mb/s 100 Mb/s 1 Gb/s

ti 1.061 ms 161 µs 71 µs
ts 1.176 ms 186 µs 87 µs
tr 10.141 ms 1.061 ms 152 µs
tg 15.585 ms 1.555 ms 585 µs
tb-i 1010 ms 100.06 ms 10.07 ms
ti, t 1.010 ms 110 µs 20 µs
ts, t 1.120 ms 130 µs 31µs

si 965 o/s 7352 o/s 21739 o/s
si, t 990 o/s 9991 o/s 50000 o/s
%CPU 3 % 19 % 57 %
ss 872 o/s 6410 o/s 17544 o/s
ss, t 893 o/s 7692 o/s 32258 o/s
%CPU 2 % 17 % 45 %

Table 1 and 2. Elapsed times and throughputs of a

RP*N
RP*N

drawback
of
multicasting
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b RP*C RP*S LH*

50 2867 22.9 8.9

100 1438 11.4 8.2

250 543 5.9 6.8

500 258 3.1 6.4

1000 127 1.5 5.7

2000 63 1.0 5.2

Number of IAMs until image convergence



117

Research FrontierResearch FrontierResearch Frontier
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Kroll & Widmayer schema
(ACM-Sigmod 94)

Kroll &Kroll & WidmayerWidmayer schemaschema
(ACM(ACM--Sigmod 94)Sigmod 94)

�� Provides for 1Provides for 1--d ordered files d ordered files 
–– practical alternative to RP* schemespractical alternative to RP* schemes

�� Efficiently supports range queriesEfficiently supports range queries
�� Uses a paged distributed binary treeUses a paged distributed binary tree

–– can get unbalancedcan get unbalanced
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k-RP*kk--RP*RP*
�� Provides forProvides for multiattributemultiattribute (k(k--d) searchd) search

–– key searchkey search
–– partial match and range searchpartial match and range search
–– candidate key searchcandidate key search

»» Orders of magnitude better searchOrders of magnitude better search perfperf. than . than 
traditional onestraditional ones

�� Uses  Uses  
–– a paged distributed ka paged distributed k--d tree index on the serversd tree index on the servers
–– partial kpartial k--d trees on the clientsd trees on the clients
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Access performance
(case study)

Access performanceAccess performance
(case study)(case study)

�� Three  queries to a 400 MB, 4GB and a 40 GB fileThree  queries to a 400 MB, 4GB and a 40 GB file
–– Q1 Q1 -- A range query, which selects 1% of the fileA range query, which selects 1% of the file
–– Q2 Q2 -- Query Q1  and an additional predicate on nonQuery Q1  and an additional predicate on non--key attributes key attributes 

selecting 0.5% of the records selected by Q1selecting 0.5% of the records selected by Q1
–– Q3 Q3 -- A partial match x0 = c0 successful search in a 3A partial match x0 = c0 successful search in a 3--d file, where d file, where 

x0  is a candidate keyx0  is a candidate key

�� Response time is computed for:Response time is computed for:
–– a traditional disk filea traditional disk file
–– a ka k--RP* file on a  10 Mb/s net  RP* file on a  10 Mb/s net  
–– a ka k--RP* file  on a 1RP* file  on a 1 GbGb/s net/s net

�� Factor Factor S S is the corresponding speedis the corresponding speed--upup
–– reaches  7 orders of magnitude  reaches  7 orders of magnitude  
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dPi-treedPidPi--treetree

�� Side pointers between the leavesSide pointers between the leaves
–– traversed when an addressing error occurstraversed when an addressing error occurs

»» a limit can be seta limit can be set--up to guard against the worst caseup to guard against the worst case

�� Base index at some serverBase index at some server
�� Client images tree built pathClient images tree built path--byby--pathpath

–– from base index or through IAMsfrom base index or through IAMs
»» called correction messagescalled correction messages

�� Basic performance similar to kBasic performance similar to k--RP* ?RP* ?
–– Analysis pendingAnalysis pending
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ConclusionConclusionConclusion

�� Since their inception, in 1993, SDDS were Since their inception, in 1993, SDDS were 
subject to important research effortsubject to important research effort

�� In a few years, several schemes appearedIn a few years, several schemes appeared
–– with the basic functions of the traditional fileswith the basic functions of the traditional files

»» hash, primary key ordered, multihash, primary key ordered, multi--attribute kattribute k--d accessd access

–– providing for much faster and larger filesproviding for much faster and larger files
–– confirmingconfirming initalinital expectationsexpectations
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Future workFuture workFuture work
�� Deeper analysisDeeper analysis

–– formal methods, simulations & experimentsformal methods, simulations & experiments

�� Prototype implementationPrototype implementation
–– SDDS protocol  (onSDDS protocol  (on--going in Paris 9)going in Paris 9)

�� New schemesNew schemes
–– HighHigh--Availability & SecurityAvailability & Security
–– R* R* -- trees ?trees ?

�� Killer appsKiller apps
–– large storage server & object serverslarge storage server & object servers
–– objectobject--relational  databasesrelational  databases

»» Schneider, D & al (COMADSchneider, D & al (COMAD--94)94)
–– video serversvideo servers
–– realreal--timetime
–– HP scientific data processingHP scientific data processing



125

ENDENDEND

Thank you for your attentionThank you for your attention
Witold Litwin
litwin@dauphine.fr
wlitwin@cs.berkeley.edu
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