MULTILEVEL TRIE HASHING

W.LITWIN,D.E ZEGOUR, G.LEVY

INRIA 78153 LECHESNAY, FRANCE

ABSTRACT

Trie hashing is one of the fastest access methods to primary key ordered dynamic files. The key address
is computed through a trie usualy in core. Key search needs then at most one disk access. For very large
files, trie Sze may however become prohibitive. We present an extension of the method, where the trie is
split into subtries stored each in a page on the disk. Address computation requires the core for a single page.
Two disk accesses may suffice for any key search in a Gbytefile.

[. INTRODUCTION

Trie hashing (TH) manages dynamic and ordered files of records identified by a key. The access function
generated by the method is a dynamic trie whose size is wsualy proportiona to the file size. As long as the
trieisin abuffer in the main memory (core), any key search takes at most one disk access. Thisis usually the
case, especidly for files on persona computers. The method is then among the most efficient. In particular,
it is usualy faster than Btrees IBAY 72/,/BAY 77/ because of higher branching factor. Properties of the
method are discussed in /TOR83/, IGON84/. /IKRI84/, IDAT86/ and /L1T81, 84, 85/,

However, the requirement that the entire trie is in core may be inconvenient for very large files or when
severd files should be used smultaneously. Below, we describe an extension of the method adapted to these
cases. The extension was called multilevel trie hashing (MLTH). Its principle is to split the trie into subtries
small enough to be fitted in the buffer. Subtries are stored in pages on the disk, organized into atree. Pages
are created through the principle of splitting of overflowing subtries.

Below, Section Il recals at first the principles of TH. The presentation differs from the origina one in
/LIT8I/ by the discussion of properties of the method that appeared in the meantime. Section 111 defines the
MLTH algorithm for trie splitting and Section 1V discusses the operations on MLTII file. Section V analyzes
the performance of the method. In particular, it shows that two accesses should usualy suffice for a key
search in Ghyte files. Section VI shows that MLTH provides a better search performance or is less sensitive
to adverse key distributions than the related methods. Section VII concludes the discussion.

[l. TRIE HASHING

1.1 Filestructure

For TH, afileis aset of records identified by primary keys. Keys consist of digits of a finite and ordered
aphabet, where the smalest digit, caled space, isdenoted ' ' and the largest digit is denoted "' . All
possible keys congtitute the key space. Inside a record, only the key is relevant to access computation.
Records are stored in buckets numbered 0,1,2,...,N that are units of transfer between the file and the core.
The bucket number is caled, its address. Each bucket may contain the same number of records called bucket

capacity and denoted b ; b 3 2.

Fig 1 shows TH file of 31 most used English words /KNU73/. The file is addressed through the trie at the
fig 1-c, created dynamically by splits of overflowing buckets in the way shown later on. A trie is classically
presented as an M-ary tree whose nodes correspond to digits /FRE60/, /[KNU73/. This structure is however
inefficient for dynamic files (/KNU73/ pp.481-485). In TH, the M-ary structure is embedded into a binary
structure, as at the figure, called below if needed TH-trie and axiomaticaly defined as Litwin trie in
IT'OR83/ TH-trie is a particular btree in the terminology of /KNU73/ (p. 315) that is a single node called
root plus 0 or 2 digoint btrees (not to be confused with the well known B-tree /BAY 72/). Each trie has an
odd. number of nodes and a node usually noted n is either a leaf or an internal node with either O or 2 sons.
Internal nodes form a binary tree (this is a general relationship between btrees and binary trees KNU73/(p,
315)),An internal node contains a pair of values caled digit value and digit number, usudly noted below (d,
i). Thetrieis empty when it has no interna nodes. Otherwise, i = O for the root. A leaf either contains avaue
noted A that points to bucket A or the value called nil that indicates that no bucket corresponds to the ledf,
Accordingly, the leaf is caled leaf A or node A or nil leaf (node).

To any n corresponds a string called a logica path to n noted below G, and defined recursively as
follows:
Let (c), be(I+1)-digit prefix of astring ¢ (an empty string for | <0)

- If nistheroat, then C, ="".
- Otherwise, let p = (d, i) be the parent of n. If n istheright child then C, = C, else C,=(C,)i.1 d.

Fig l.c shows the logica pathsin the example trie,

The logicd paths define an M-ary structure on TH-trie called below a logical structure, whose internal
nodes are digits and leaves are bucket addresses. Fig 2 shows the logica structure of the exampletrie. All d’s
with the same i in TH-trie congtitute level i in the logical Structure. Each node (d, 0) corresponds to a
(unique) digit d at the level O, ordered from left to right according to the digit value order; for instance (i, 0)
corresponds to digit 'i* at level 0. The edges link d; either to d., next on the logicd path, like'i"and ‘' orto
the leaf terminating the path, like ‘i’ and leaf 3 for instance- This M-ary structure is characteristic to tries
(see Fig 31, p. 484 ilKNU73/), except that in TH leaves are pointers to buckets and not the keys themselves.

Figurel: Examplefile.
(a) : Keyssequence

the, of, and, to, g, in, that, is, i, it, for, as, with,was, his, he, be, not, by, but, have, you, which, are, on,
or, her, had, a, from, this

(b) : Trie
(c) File:
to or you her
are this an it by with he
atd the of iz bt which [] have at from
a that not in be waz i had his as for
0 1 2 3 4 5 & 7 g) 10

(d) Node structure

Up
ov, M
LP
(e) Trierepresentation
-4 2 3 -5 5 =] -7 g 9 10
o, 0 i, 0 1 a 0 t, 0 h, O f, 0 e, 1 r, 1 b, 0
-1 -2 -3 - & i -G -9 7 0 4

The basic memory representation of TH-trieisalinked list called standard representation /LIT8I/. Fig |.d
and 1.e show the standard representation of the example trie. Each element of the list is called a cell that
congists of four fields. Fields DV (digit value) and DN (digit number) represent an internal node of the trie.
The pointer LP represents the left leaf or edge under this node and the pointer RP represents the right leaf or
edge. A positive pointer value A, means that the field represents the leaf A. A negative value -A, represents
an edge and points to cell A representing the child node.

Cdl 0 represents the trie root if the root is not leaf O. The empty trie, corresponding either to the empty
file or with bucket 0 only (after the first insertion), is represented as cell O with DV ="',DN = Oand LP =
'nil” or LP = 0, Otherwise, there is exactly one cell per internal node. The number of cellsis aso equd to that
of the leaves minus one.

The standard representation is not the only one possible. Other representations exist and may have
desirable properties /LI1T85/

Il 2Kev search

The keys are mapped to the addresses through the logica paths, according to the following rules:

0] al keys are mapped to the root,

(i) let n be anode and S, the set of keys mapped to n. Let p= (d, i) be some parent with | and r its left
and right children. Then, § contains al keyscin S, for which (c); £ C;, and dl other keysof S,

(i) For any key, its address is the pointer reached through the application of rules (3) and of (ii).

In the example trie, al keys are thus mapped to node (o, 0). Then, only The keys with (), £ '0" are
mapped to node (i, 0), al others are mapped to (t, 0). From §;, o), the keys with (c), <= ‘i’ are mapped to
(L, 1), others are mapped to leaf 2. From S_ 1), the keyswith (c), £1" goto (g, 0), others are mapped to leaf
3, €tc.

These principles lead to the following agorithm for key search, determining the successive nodes on
which the key is mapped:

(A1) TH key search. Let c be the searched key, r the trie root and n thevisited node ; n=(d, i) for interna
nodes and n=r initially. Let L(n) and R(n) be two operators providing the left and the right child of n. Let C,
C' be string variables, C =C'=": initidly,

While B is an internal node do:
Set C' < (C)qd
if(c) ECthenC < C';n &« L(n) elsen <& R{n)

Endwhile ; Returnn,C

For the exampletrie, ¢ = 's for instance, returnsn= 1and C ='t', whilec = 'he’ or c = 'gun1 returnn=7
and C ="he'. If Algorithm Al ends up in anil node, then c isnot in the file. The values of C are the logical
paths to the successively visited nodes. They are returned for the splitting algorithm A2 below,

While Algorithm Al is probably the smplest, one may optimize the search. The following agorithm may
be faster, as it compares only one digit at the time, skips unnecessary comparisons and does not need C'. It
compares at first only the leftmost digit c, of ¢ and only to nodes with i = O, until c, = d or aleaf is reached.
In the case of the matching, the comparison switches to C; and to nodeswith i = 1 only etc. The notation and
initid vaues are basicdly asin Algorithm Al.

(Al bis) TH key search. Let ¢, denotedigit j of c = CoC,,..,C,, ..Cy. Let it bej =0 initially.

Whilen isan interna node do :
If j=i then

If ¢j £ dthen
C & (C)iad ; If ¢ =dthensetj €j+1;
set n < L(n);

elsen < R(n)

else

if j <i then
setn € L(n);C < (C);..d

else n < R(n)

Endwhile

return nc

The search for 'he' for instance, compares at first C, ='h’ to digitsin nodes with i = 0, and to only to such
digits. Thus the comparison of ‘h’ to ' ' is skipped. When (h, 0) is reached, the comparison switches to ‘e
and to nodes with i = 1. TH key search differs thus from the usua key search in abinary search tree or in a
usud trie, where the key is compared to each node value. Both agorithms compare indeed only a part of the
key either to a value computed from the visited nodes (Algorithm Al) or to selected nodes (Algorithm A2),
They apply the idea in hashing that is " to chop off some aspects of the key and to use this partia information
asabasisfor searching” (/KNU73/, val 3, p. 507). Deeper discussion of these aspectsof TH isin/LIT85/.

1.3 Range queries

A range query searches al keys c within someboundsc, and ¢, ; ¢; < C,; in descending or in ascending
order. Therule (ii) above for the key-to-address mapping to implies that the TH fileis ordered and thus keys
may be searched using only one access per bucket. more efficiently than for a classical hashing. If leaf n
points to the visited bucket, then the successor of n in ascending key order is the leftmost leaf in the right
subtrie of the (unique) node for which n isthe rightmost leaf in the left subtrie. In the trie on Fig 1-b, the
successive leaves and buckets are 0, 9, 4, 10, 7, 8, 6, 3, 2, 1, 5.

This order d leaves corresponds to the inorder traversal of thetrie. It at so corresponds to the preorder
and postorder traversals, since al these traversals coincide with respect to the leaves order. The inorder
traversal is recursively defined, as : (1) Traverse the left subtree in inorder, (2) Process the root node, (3)
Traverse the right subtree in inorder. Simple agorithms for inorder traversa, as well as for the other
traversas are widely known /KNU73/, /TRE8S/ etc. The following algorithm is derived from Algorithm T in
/IKNU73/, Vol 1, p 317. The notation is this from Algorithm Al and S denotes an initialy empty stack.

(T) Inorder traversal of the trie

1, Setn <,

2.I1f nisaledf. goto step 4.

3. Set S < n, i.e, push n onto the stack. Set n < L(n) and return to step 2.

4- [n <= Stack] Vidt n. Then, if Sisempty, then return elseset n< S, i.e. pop n from the stack.

5 Vistn. Then, set n < R(n) and go to step 2.

The leaves in ascending key order are delivered by step 4, To visit them in descending key order, one has
to traverse the trie in converse inorder (preorder, postorder), The converse orders simply correspond to the
interchange of the words "left" and "right” in the origind definitions. The corresponding converson of
Algorithm T istrivid.

One way to process a range query is therefore (i) to compute by Algorithm A1 the addresses A; and A2
for ¢, and ¢, and (ii) to read the buckets in the inorder of Ieaves between these bounds. The Algorithm T will
usualy vist more leaves, as it Sarts the traversal from leaf O while usualy A; >0. One may however start the
vigts directly from A;. It suffices to put on a stack the nodes whose left edges were used while computing
Algorithm A for ¢. The stack would then contain the same nodes as stack S of Algorithm T when the
traversal reaches A;. The adaptation of Algorithm T is trivid. This strategy may speed up the query
processing, though the trie traversal is a memory operation that thus should be anyhow usualy much faster
than bucket accesses,

To illustrate the range query processing, consider for example the search for keys ¢ starting with *h', e.g.
‘h" £c £°1" . Algorithm Al would return addresses 7 and 6. If Algorithm T is not modified, it will also
compute the traversal for al nodes preceding leaf 7. If Algorithms T and Al are modified to avoid this part of
the traversal. Algorithm T will start with stack S with nodes: (o, 0), (i, 0), (_,1), (h, 0), (e, 1), The accessed
buckets will bein both cases: bucket 7, 8 and 6, in this order .

1.4 File expansion

Insertions expand the file through the splits of the overflowing buckets. Each split usually moves about a
half of keys in the overflowing bucket A, into a new bucket, appended to the file end. The move results from
the trie expansion, usually by one internal node and one leaf pointing to the new bucket. The effect is that C,
decreases or that it is extended with some digits. If j + 1 is the length of new C,, some prefixes (c) in

bucket A become then greater than C,. The moved keys are these with such prefixes.

(A2) Th bucket splitting

Let C result from Algorithm Al for the key to be inserted-Let N be the last current address in the file. Let
B be the ordered sequence of b+1 keys to split, including the new key and let c" bethe last key in B. Let ¢’
denote akey in B called the split key usualy near the middle of B .

1. |Determine the split string] Find the shortest (¢');, called the split string that is smaller than (¢,

2. [Split the bucket] Set N €< N + 1. Append bucket N and movetoit al keys ¢ in B Whose (¢); > (),
3. [Trie expansion] :

3.1 [Find the digits of the split Siring that are aready in the trig] If i > O, then cut from (c'); the largest
(c);1<i;suchthat (c), =(C), Ifl<i-1,thengotostep (3-3),

3.2 [Usud case : expand the trie by one interna node and leaf N] Replace leaf A with node (C', i).
Attach leaf A again, asthe left child of (c';, i). Attach leaf N asthe right child of (c';, i) Return,

3-3 [Expand the trie by more than one nterna node] Replace leaf A with the following
subtrie:

- (C'1+1, I+1) istherooat,
- theleft child of each (C;, j) ;j =I+1, ..., -1, iS(C'j+1, j+1) ; theright child isanil node.
- the left and right children of (c;, i) are leaves A and N.

3.4 Return.

Thefile a Fig |.b was Created by splits generated by insertions of Fig |.ato buckets with the capacity b =
4, For each slit, the solit key podgtion min the sequence B was m = INT(b/2 + 1)=3. The initid file
consisted of bucket 0 and of leaf 0. The first three splits were as follows :

- key 'a generated the 1t split. The split key was "of and the split string was '0, as it was the shortest
prefix of ‘of smaller than the same length prefix of ‘the, the last key in B, Step 2 appended bucket 1 and
moved to it keys 'to’ and 'the , leaving thus three keysin bucket 0. Step 3 expanded the yet empty trie to node
(o, 0) with two children ; leaf 0 and leaf 1.

- the insertion of key 'is generated the 2nd split of bucket 0. The split key was then ‘in’ and the split
string 'i'. Step 2 moved to bucket 2 key ‘of’, leaving thus key 'is in bucket O, unlike it would be the case in a
B-tree split. The split resolved the collison, but left bucket O full- Step 3 replaced leaf 0 with node (i, 0) and
appended to it leaf O asthe left child and leaf 2 asthe right one,

- Key "i" generated the 3rd split of bucket 0. Algorithm A2 chose key T as the split key, The split siring
was then i’ since the last key of B was'is (note that the split siring was in this case longer that the split
key itself and. that ‘i’ = ‘i '="i__.....") . Step 2 appended bucket 3 and moved there keys 'in’ and 'is. Step

3.1 found, for the first time, that some front digits of the split string are already in the logica path ¢, and thus
in the trie, in the occurrence digit T. This digit was then cut off and the split string shortened to the single
digit' ', Step 3,2 replaced leaf 0 by node (_, 1) with leaf O asleft child and leaf 3 as the right one,

It should appear from these splits that the idea in Algorithm A2 is to minimize the number of nodes
created by the split. Step (1) chooses for this purpose the shortest split string (C'); . Step (3.1) removes further
al front digits dready in C. Usually, this reduces (c'); to a single digit, leading to a single new lesf that is
leaf N and a single new interna node (d;, 1); / £ j+1 ; where (j+)is the current length of C. Otherwise, Step
(3.3) creates one internal node and one leaf per remaining digit. Except for the bottom right leaf M all other
right leaves are then nil leaves, as the corresponding buckets would be empty, A nil leaf is replaced with an
actual address N+l at the first insertion choosing it. The corresponding bucket is then appended and the key
inserted. An example of nil leaf processing isin/LIT81/.

Since a split usually adds only one digit and one address, as long as digits are atomic vaues, TH-trieis
basically the most compact representation in a form of a binary tree of the set of split strings used for the file
expansion, (we say bascally, snce one may optimize Algorithm A2 in a way providing sometimes shorter
split strings or even avoiding some splits through a recalculation of the existing node values). To obtain a
more compact representation, one has to either break digits to bits, or has to use sequentia representations of
the logical structure, i.e, without LP or RP /LIT81/, /L1T84/, /ITOR83/. These representations are however
much less efficient for interna search and dynamic modifications. Another possibility is to avoid, to use digit
vaues a dl, while calculating the splits using an interpolation like in /BURS83/, but then performance is
again less efficient for internal search and. more sensible to adverse key distributions. This aspects of TH
design are discussed in Section VI.2.

The keys ¢ that move to bucket N are al those whose (c); > (¢');. Not only the split key stays in bucket A,
but may be some but not dl keys above it in B, asit appeared in the example. TH splits have thus a random
tendency to load bucket A more than it would be the case of a B-tree with the same position of the split key.
If the split key is the middle one, TH splits tend to be on average asymmetric. This asymmetry has no
practical effect on bucket load for random insertion, but reveas beneficial to sorted insertions (/LIT85/ and
Section 11.6). It makes TH splits half random /LIT85/ in the sense that if ¢' is chosen in the middle of the
bucket, then bucket A surely keeps each ¢ £ c¢' and thus at least half of keys. It dso situates the method
between these using die deterministic splits, like B-trees, and "pure"’ dynamic hashing methods discussed in
Section VI-2 using random splits.

I1.5 Filecontraction

Buckets and leaves A and A’ are siblings if they have the same parent node. Siblings that after some
deletions contain together at most b keys may be merged in the way inverse to splitting, freeing then bucket
A" and shrinking the trie. Deletions may aso render empty a bucket A that has no sibling, like bucket 6 in Fig
1. Leaf Ais then made nil and the bucket disallocated.

1.6 Performance

Performance analysis of TH isin /L1T85/. It mainly concerns the load factor a == x / ((b (N +1)), where
X is the number of keys in the file. The values of a are determined for random, ascending and descending
insertions, coming unexpectedly, and noted below respectively a,, a, and a 4. It appearsthat, for the split key
near the middle of the bucket, eg, m» 0.5b, a, stays on the average close to 70% as in a B-tree. For the
samem, a, iswithin 60 - 70%, depending on b. Thisis substantialy better man the well known a , = 50 %
of a B-tree and in particular dlow to load the file through the usud insertion agorithm. Findly, the
corresponding a 4 iS40 - 50 %. It increases over 50 % if mislowered to m » 0.4 b. at the expense of a ,, but
for somem, both a, and a4 are over 50%, The reason for this surprising property that seems uniqueto TH is
that the split asymmetry for the same m and keys is on the average larger for ascending insertions than for
descending ones. The value of a, isamost unaffected when mdecreasesto m» 0.4b, though it may dightly
improve for some optimal m values under 0.5% , depending on b- The percentage of nil leaves is negligible,
under 0,5% for random insartions- In practice, the trie grows at the rate of one cell per split and there are N
cdlsinthelist

When thetrieisin core, any successful search for akey costs 1 disk access. An unsuccessful search costs
at most 1 access, as no access is needed to anil leaf. The practical cell Sizeis six bytes ; two bytes per LP
and RP and one byte per DV and DN. Therefore, 6K byte buffer suffices for about 1K bucket file, while 64K
byte buffer suffices for 1K bucket file- Since typica values of b are between 10 and 200, the corresponding
TH files may contain about 10* — 10° records. In particular, if the bucket is the MS-Dos hard disk alocation
unit (cluster) that is 4K bytes, then 30K byte buffer suffices for the file covering the 20M byte disk of 1BM-
AT.

A typica IBM-PC compatible or aMac has now at least 512K of core or some Mbytes. Macintosh Plus
has in particular at least 32K bytes for the cache memory. The assumption that the trieis in core is therefore
reasonable, especialy for persona computers.

. MULTILEVEL TRIE HASHING

[11.1Theidea

The requirement that the trie is in core may in contrast be inconvenient when the file is very large or
many files should, be open smultaneoudy. MLTH is intended for these situations. It keeps TH schema for
bucket splitting, but also splits the trie. The subtries are stored in buckets called pages structured into an M-
ary tree (Fig 3). A page size may be smadl, usudly a few Kbytes. A subtrie splits dynamicaly when it
overflows its page. As for the buckets, page addresses are 0,1, ... but they correspond to a distinct physica
area. The number of cells per pageis called page capacity and. isnoted b'.

page O

Fig 3 ! MuRtllevel Tria

Ill. 2 Trie splitting

IIL2.1 Overall principles

L et P be the page that overflows, T the (sub)triein P and r the root of T. Unless P = 0O that is always the
root page, there is a parent page P' that pointsto P. The smplest way to split the trieisto mover toP' or to
keep it in page 0 and to make ii pointing to two pages containing respectively the left and the right subtrie of
r. Node r would become a split node. For the trie a Fig |I.b, node r= (o, 0) would become the split node, the
subtrie rooted by (i, 0) would enter the left page and the subtrie rooted by (t, 0) would enter the right page.
However, as this trie shows, such a straight split could be uneven, lowering the page load to some extent for
random insertions and largely for adverse distributions. One needs a method making splits usudly even. The
MLTH split consists of two phases :

1- Choice of the best split node noted r', making the number of internal nodesthat preceder' ininorder in
r the closest to that of nodes following r’,

2. Trie splitting using r' that is the splitting of the (sub)trie T into two subtries: T'; whose nodes precede
r'ininorder and T, whose nodes follow r'.

The inorder keeps the trie splits ordered. The node r' movesto P' or daysin page 0. The pointers in the
cell representing r' are set to the addresses of the pages with T', and T’, becoming page pointers. Page
pointers are positive, but they cannot be mistaken with bucket pointers, as it will appear. Details of the steps
are asfollows.

I11.2.2 Choice of split node

We cal logica parent of node n = (d, i) in T the node p in T mapped to the parent d, of node d, in the
logicd structure of T. For instance, (i, 0) isthe logical parent of (_, 1) in the example trig, since node 'i' is the

Fig 2 : Logilcal structure of the trie

parent of node ' ' in the logical structure at Fig 2, aswell as (h, 0) is the logica parent of (e, 1). No node
n = (d, 0) hasthe logica parent. For i > 0, p isan ascendant of n in T that is the parent of n if n isaleft child,
otherwise it is the last node on the path E from r to n whose left edgeisin E . The former case appliesto (_,
1), the latter appliesto (e, 1).

We further call tries T; and T, equivalent if they have the same logical structure. For instance the tries at
Fig 1 and Fig. 4 are equivaent. Equivaent tries provide the same key-to-address mapping, as they have the
same logica paths and nodes, but may differ by edges and roots. In particular, if r" = (d,-, i,+) istheroot of
T,, then the node (d,-, i,+) logicdly corresponding to r" in T, i.e. mapped to the same digit d,- in the logica
structure, cannot have the logical parent P in T,. Since node p in T, would indeed be a descendant of r" in T,
as any other node in T,, p could not be the logica parent of r" in T, and the logical structures would have to
differ. For ingtance, any node (d, i) with i = 0 in the example trie may be the root of an equivaent trie, but
not anode with i > 0. For thistrie, thereis exactly seven choicesfor r* ,induding r"* = r = (o, 0).

The triplet (T, r', T;) may be considered as atrie T rooted by r' and equivaent to T, as will be shown. Let
N +1 be the size of T and thus of T and L the size of T,. The best split node r' rooting T is the node of T that
(& minimizes!L - N | 2!, provided (b) it has no logica parent in T. At least one choice of r' always exists,
namely r' = r . It may happen that it is the only choice.

The test of the condition (a) is trivia, but not this of (b). However, the following properties make it

smple and fast:

() -if r'isj -thinternal nodeininorder in T ;j=0,1,2,...; thenL=j

(i) - if the traversa of T uses agorithm T, then the visited node n has alogica parent p in T iff pisin
stack S.

(iii) - n hasno logicd parent if i, =0 or Sisempty and it hasalogica parent if i' < iy,

wherei' isthe digit number of the node at the bottom of S. Otherwise, n may have the
logica parent or not depending on the trie.

Property (i) results from the definition of the best split node itself. Property (ii) holds since S containsal
nodes with the left edge in E which isin particular the case of p. Property (iii) results from the trie expansion
principlesin Algorithm A2.

Figure4 : Trie split

-2 |8 4|1nla I- a|l2 |3 l S,
afol Holef1] ofofilo] [1]i]o
tol-sfalz] [1 1l-2lel1
o T R S g 2 1 2.3 2
Fig 4 : Trie split

The following agorithm applies these properties to find r'. In fact, it computes the whole path E until r',
needed for phase 2. The path is computed from stack S produced by Algorithm T assumed dightly modified
to contain E. The agorithm aready puts on S al nodes with left edge in E . We assume further that each
node n stored on S has aflag F that is set to F < .false when n is pushed onto A in step 3 of Algorithm T.
Then, the operation n < Sin step 4 isrepeated until n with F = .false. Theflag isthen set to F < .trueand n
is pushed onto A again. Step 5 is then performed for n as presently. The noder' itself isthelast in E.

(A3) MLTH split node search. Letitbe: L = -1, v =,t = N/2, nthe visted node, i (n) the digit
number of n, i* the digit number at the bottom of Sif Sis not empty.

Whiletraversing T in inorder:

If nisaninterna node then :
setL<L+1setv €4 1%
(@ ifv £v'thenreturnE
ifi(n)=0or Sisempty thensetv €< V' ; setE € Selse
(b) ifi’ 23 i(n)then
if Shasno node n' withi(n") =i(n) - 1 and F = .false then
setv&< V' ;setE< S

Endwhile; Return E

The agorithm aways terminates, returning E with either a node providing a better split than r or r itself.
For the example trie, the execution of Algorithm A3 would be as follows :

- Node (r, 1) would be visited first. Thetest of i* would show that (r, 1) hasthe logica parent and v value
would not change.

- vidgtsto nodes (a, 0), (b, 0), (f, 0) would progressively decreasev .

- node (e, 1) that could correspond to one of the best values of L that are L = 4 and L = 5, would not
changev,

- node (h, 0) would further decrease v . Node (_, 1) would terminate the computation and the agorithm
would return E = (o, 0), (i, 0), (. 1), (& 0), (h, 0) with thus r' = (h. 0).

Ill. 2. 3 Trie splitting

Ill. 2.3.1 The algorithm

The gplitting agorithm is derived from the agorithm for splitting a list into two parts whose
concatenation is the origind list, in /KNU73/ (p. 466-467). It constructs progressively T, and T, while
traversing nodes of T in path E fromr to r'. Like at Fig 4, it then assmilates the triplet (T',, r', T';) toa
(sub)trie equivalent to T to split in the straight way (with r' as the root).

(A4) MLTH trie splitting. L et P be the page that overflows. Let N' be the last page in the file. Let n be
the visited node and n' the child of nin E. Let nj be anode called ajuncture node in /KNU73/. I n generd, if
T, satriewith n then we say that one concatenated atrie T, with T, when the root of T, replaced n; rendering
both tries asingle one. Initialy, T', and T',. consist each of a single juncture node.

1L[BuildT,and T',] :
- While visiting successively each n#r' in E, gartingfromn =r, do:

- If n"isthe left (right) child then concatenate T', (T',) with n and its right (Ieft) subtrie ; create then the
left (right) child of nand set it to current n,.

- Concatenate T, with the right subtrie of r' and T'; with the left subtrie of r'.

2. [Write T', and/or T, to the disk if they do not overflow] :

- If ', does not overflow then if P is not page O, then write T'; into P else write T, into page N’ and set N'
< N +1.

- If T, does not overflow, then write T', into page N' and set N' < N' + 1.

3. [Connect r' to the parent of Tif any andto T', and T',]

- If T has the parent, in page let it be P', then read P'; insert r' valueinto DV and DN of the first free cell
N'y in the buffer of P'; set LP(N'y) € P and RP(N',) € N"; set the page pointer that pointed to P within the
parent cell to P €< -N',.

- If Pispage 0, then replace the content of P with r' and connect pagesN' -1 and N to .
4. [Split the overflowing subtrig, if any]. If either T, or T', overflows, then apply A4to T’y or to T',.

5. If the buffer with r' does not overflow, then write it to page P' or to page O and return. Else apply A4 to
the subtrie in the buffer.

111.2.3.2 Discussion

Fig 4 shows the gplit of the example trie. The agorithm worked as follows, from the initia vaues
returned by Algorithm 3 that were: E = (o, 0). (i, 0), (. 1)> (a. 0)> (h, 0) and thus r' = (h, 0) .

- Step 1 started with node (0, 0) whose child (i. 0) in E is aleft child. Therefor e the step concatenated
T, with the node (o, 0) and itsright subtrie in T. The left child of (o, 0) in T’, became new n.

- Step 1 was then iterated for node (i, 0). Since its child in A is again a left child, this node and its right
subtriein T became the left subtrie of (o, 0) in T',. By the same token, the node (_, 1) and itsright subtriein
T became the |eft subtrie of (i, 0) in T', and the left child of (_, 1) in T', became new n.

- In contragt, (a, 0) became the root of T', sinceits child in E is aright child. Also its-left subtrie entered
T';, while n; becameitsright child.

* Theleft subtrie of (h, 0) in T replaced n, in T'; and the right subtrie replaced nj in T',

» Step 2 wrote T’ into page 1 and T, into page 2.
* Step 3 replaced the content of buffer of page 0 with cell 0 with valuesDV = h, DN =0, LP= 1,RP=2.

- Step 5 wrote the buffer to page 0 and terminated the agorithm.

The agorithm may generate a multilevel trie, but in practice P' should stay page O only. Page 0 should
overflow only at the first split of the trie, when the trie becomes bileve. T*, (T'..) overflows iff the bucket
split that triggered the trie split appended more internal nodes to the left (right) subtrie of r than resulted for
T, (T")) from the split. The corresponding recursive cal to A4 isvery unlikely.

It is aso unlikely, dthough may happen that T', or T', consists of a single leaf. This is the case if one
chooses (t, 0) as the split node in the example trie. The empty subtrie is represented in the new page by the
cdl that is a copy of this created for r'. However, the value of the pointer other than this pointing to the new
page is set to nil. The cdl is replaced with the usua one when the corresponding bucket is split.

The choice of r' did not violate the logica structure. The trie T' produced by the split preservesin addition
the inorder. Therefore, al logical paths are preserved aswell. Thetrie T isthusequivalentto T .

Pages with bucket pointers are called leaf pages . Other pages are called branch pages. The number of
pages that a search examines until it reaches a page is called the page level. Leaf pages are all at the same
level cdled the file level. MLTH fileisin this sense balanced, asis a B-treefile. TH file level is of course 0.

Finally, one nay observe that the basic action of the agorithms A3 and A4 on T as the whole, may be
seen as its transformation into to a better balanced T'. The process balances the respective sizes of T', and of

T, as equaly as possible, but does not attempt to further balance each subtrie. This would have no effect on
the page load factor, only on the trie traversal time that is usualy anyhow very smal compared to the disk
access time. Also, experiences show the subtries are usually already rather good. If one warnts nevertheless
the best balancing, then the couple A3 - A4 should be applied recursively to the subtries. The corresponding
extension is obvious. It may aso be applied to the balancing of TH trie as well, as the agorithm proposed in
/ITORS83/. It remains an open question which agorithm is more efficient. It is however likely that it should be
ours, as there is no transformation of T into a canonical form prior to the balancing process.

V. OPERATIONSON MLTH FILE

V.l Search and insertion.

The search moves to another page when a positive (page) pointer is encountered as long the level of the
visited page is smaler than the file level. The page at the file level must be a leaf page and the pointer is a
bucket pointer. With respect to insertions, the only new feature consists of page splits.

V.2 Ranye query

Range queries that exceed one bucket require the determination of the address of the bucket that follows
or precedes the current one with respect to key order. This address may be determined in two manners :

(a) - from the trie. The next bucket to be searched corresponds to the next leaf (in inorder or converse
inorder etc.). Usudly this leaf is within the same page and sometimes within the sibling leaf page. The
genera way to find the sibling page is to visit upper level page(s). The root page 0 should be the only such
page in practice. The address of the parent page may be found also in stack S.

(b) - from the chain linking logically consecutive buckets, same as this frequently implemented for a B-
tree. Accesses to the trie are then no longer needed, except of course for the first key search.

1V.3 Deletions

Deletions may merge sibling pages. Let P' be the page that contains the internal node to be replaced with
the value of its left child because of the bucket merge. Let P be its parent page that is the page that contained
the split node (thus P' is not the root page). Findly let P be the sibling page of P' with respect to P. The
following Situations may occur:

- The number of cdlsin P and P" is together less than b’ and there is no other page at the file level. P’
and P" are then merged into P'. In addition, the split node moves from P into P'. All the corresponding

pointers are updated in consequence.
-P" and P" are the last ones at the current file level and their cells may jointly enter the free space in P.

The cells move then to P . The pointers within P are updated in consequence.

Deletions may render the page load uneven, athough this phenomena should not have practica
importance. In particuar, one may rebaance the set of nodes in sibling pages, applying the split algorithm to
the set of nodes in both pages and to the parent node. A new parent node may result and a better distribution.

V. PERFORMANCE

V.l Load factor

The paging does not influence the bucket load factor. Bucket load for MLTH is thus this of TH. The
pages themselves are buckets of a dynamic file whose records are cells. For random insertions the load factor
a’, should thus be on the average around 65 - 70%, as page splits should be usualy even. Fig 5 shows the
shape of a’, as afunction of the number of insertions x and its average values obtained by simulations, for
three typical values of b'. These values correspond to the page size p = 0.5, 1, 2 Kbytes. As one could
expect, the average values of a’r are dmost independent of b and b’ values, though only b = 5, 10 appear at
the figure. The split balancing improves the average load by 5 - 8 %, the load factor for straight splits only,
being noted a’n at the figure. The a’; curve shape shows the usua periodica behavior in log, (x) and
oscillations due to the tendency of pages to be filled up and to split rather smultaneoudly. The curve shape
for other values of b and of b' isvery smilar.

For sorted insertions, the average values of a’ are between 40 - 80. Usudly, onehas a’,> a’y but not
aways. Generally, the actua root was the only choice for the split node for ascending insertions, eg. split
balancing was inoperative. This, because of the structura condition (b) in section 111.2.2, despite the
existence of nodes better respecting the condition (a) aone. The effect is nevertheless usualy positive, as it
makes a’, » 60 % and sometimes much higher. The large variaion of a’, values for the same b', but
different b vaues, including b = 20, 50 not shown at the figure, was confirmed by several smulations. It
seems to indicate a complex relationship between the sorted file size and page and bucket sizes, not yet
understood enough.

Unlike for ascending insertions, the split balancing revealed crucia for descending ones. Instead of being
stable usualy around 45 %, a’y had tendency to decrease towards amost zero. To obtain higher vaues of
a’y or of a’, for instance for the initid loading, the choice of the split node should enlarge the right or the
left subtrie.

V.2 Fanout

We cdl afanout of level i ;i =0,1,2,...; the average number of records filling up the file of level i. The
fanout will be denoted x(i). For the usual random insertions the fanout of MLTH file is about :
x(i) » b (0.7b) ", (V.1)

Indeed, sincea » 0.7 then the fanout of the root pageis:
x(0) = 07bb.
as this page may contain up to b’ cells. Then, the value of x(l) corresponds to the root
page full and to the average load of the other pages equal to about 70 %. Thus :
x (1) = 0.7b b' (0.7 b")=b(0.7b")?

etc.

Two byte pointers suffice for files of 2° = 32K buckets. The corresponding cell size is six bytes. Let p
be the page size in Kbytes. It results from (V.1) that for 32K bucket file, p = 1.3 usudly suffices for two level
trie. Indeed, as.

32K » 0.7 b' 2=0.7 (Kp)? /36, so: p »1.3.

To provide a buffer of this size is generally easy. It also means that a larger page for such afile is
unnecessary, unless one wishes to have page 0 only. Assuming the MS-Dos 4K byte clusters for buckets, it
furthermore means that the file may span over 130 Mbytes. Findly, assuming b between 10 and 100 as
usually, means that the file may grow up to at least 220 000 records and even 2 200 000 records.

For larger files, the pointer size may be three bytes. Such pointers suffice for 1.6M bucket files. This size
probably suffices for the largest known files. Cell size is then eight bytes. The fanout becomes about:

x (i) » b (90p)"™™.

Modest b = 20 and p = 10 suffices thus for a bi-level file of dmost 16 million records. A larger page like
p = 32, leads to such afile of 160 million records. Then, p = 64 leads to a more than six hundred million
record file etc. In marticular, page and bucket sizes equa to the MS-Dos 4Kbytes lead to the file spanning
over 0.75G bytes. This size suffices not only for IBM-PC magnetic disks, but also for the current optical
disks (about 500M to 1G byte per disk).

V.3 Access performance

The root page may be assumed in core. The successful search for akey needsthen i + 1 (disk) accesses,
in practice two accesses for the largest files, and the unsuccessful one at most i+l accesses. As nil leaves
should be rare, the average cost of an unsuccessful search should be in practice two accesses as well.

hi general, the formula of various access coststo MLTH file in the case of the random insertions are

those known, of a B-tree with the same fanout and the same splitting policy. However, they lead to larger
pages for a B-tree for the same fanout or to a better performance of MLTH file for the same page size,
because of the larger fanout. The reason for that will be discussed.

| i, ¥ -
- o
M 1;1!&' _‘,._-'1-_;-? T :ll'u..-r“f. :
|' T | b1
|. e S
Load tactor for rardom insariions with splil balancing (1)
and without [—)
a)
|
e
i | b= 10
I
I
Load fxctar far ascending () and descending(=] nsarfions
p=05K p=1K po=2K

bmf be il b=35 b= 10 o=5 b =10
o | 873 | 8B4 BE.4 £6.0 EA.0 | &8

wn | 594 61.7 B4 62.0 B0.0 58.0
sl 550 | 580 485 784 472 | 430
il 453 | 440 40.4 42.0 563 | 484

Fig. 5: Pageload factor
a) Curvesforp=1
b) Averageload factor for random and sorted insertions

VL COMPARTSON TO RELATED METHODS

V1.1 R.trees

We will cal B-cell data produced by one split within a B-tree file, or within a B*-tree or within a prefix
B-tree,... A B-cell contains mainly a record, or a key or apart of a key like a separator /BAY 77/, then a

pointer and a field indicating the cdl length or end, unless the main field is of fixed length. Given the
practical sizes of records, of keys and of separators, a B-cdll is usualy larger than that of the MLTH cell.

The cell is largest for a basic B-tree, where it usualy contains the whole record, and the smallest for a prefix
B-tree. For random insertions, the load factor a’, of a B-tree (B*-tree,...) isabout the same asthat of MLTH,
i. e. near 70%. Prefix B-tree is an exception, since the separators length optimization may decrease a’r. For
sorted insertions, the load factor is also usually higher for the ascending case and only a few percent lower
for the descending ones. The same choice of page and bucket sizes leads thus for MLTH to a fanout
generadly larger than this of a B-tree. More precisaly, it appears from (V. 1) that if B-cell is mtimes larger
than TH-cell, then for the same page size the fanout of MLTH isin general at least m"* times larger. For a
B-tree the keys are usually about 20-40 bytes, which means that two level MLTH file may be about 10 to 45
times larger. For a prefix B-tree, m = 2 should be quite typical, which means that two level MLTH file may
be 4 times larger. For smaler files, the disk access costs of MLTH should then be at most those of a B-tree.
For larger files, the access costs of MLTH should be smaller by at |east one access. Internal search should be
faster as well, especidly if Algorithm Al bisis applied.

While a prefix B-tree minimizes m among B-trees, it introduces algorithmic constraints with respect to
both TH and a usua B-tree. The search is more cumbersome, as the cells are of variable length. The binary
search in the page requires the existence of the delimiter noted *' in /BAY 77/ that must not appear inside a
Separator or a pointer, while modem applications use usually the full ASCII code for separators. Findly, the
deletion is complex, as the merge may expand the separators, triggering overflows /BAY 77/. Usudly, one
knows whether the merge is possible only after recalculating the separators. For al these reasons, while B-
trees and their basic variants are among data structures most used, as far as we know no commercia system
uses prefix B-trees (except might be the new recently announced system Merkur).

B-trees have several variants /KNU73/, /YAO78/, ICOM79/, /[LOM8L/, /IROS81/, /SHO85/,.... Each

variant optimizes some performance, usually the value of ag. However, the ideas in these improvements may
also be applied to MLTH and should lead to similar improvements.

V1.2 Dynamic hashing.

Among various dynamic hashing access methods, /LAR78/, /LIT78,80/, I[FAG7Y,..., Some are
designed for ordered files. Most known are probably the interpolation hashing (IH) /BUR83/, the grid file
(GF) /NIE84/ and the bounded disorder method (BD) /LIT86/. Although IH and GF are basically designed as
multikey access methods, one may apply them to primary key ordered files as well.

IH may provide higher load factor than MLTH, as it may attain about 90%. It may also attain abetter
average search cost, which may be under two accesses. However, while no key search in MLTH may need
more than two accesses, keys in overflow chains of IH need severa accesses. Finaly, IH does not support

sorted insertions and is more sengitive to adverse distributions.

GF load factor is similar to that of MLTH. There is no overflow record and so search cost is also two

accesses. However, the method is also more sensitive than MLTH to adverse distributions. Insertions may
then lead to an exponentia growth of the directory.

The nature of BD is different from GF and from IH, since it may be used in connection with any principle
of indexing. The principle of BD is indeed to replace in an access method the concept of a bucket pointed by
an index cell, with the concept of a multibucket node addressed internally through hashing. The fanout may
then increase and so the search costs may decrease. The price to pay is a higher cost of splits and of range
gueries, since there is no order within the nodes.

One way to compare BD and MLTH isto consider that BD is applied to TH instead of trie splitting. The
load factor of BD should therefore be a few percent smaller than this of MLTH, as BD nodes cannot be filled
up to 100%. The average search cost may in contrast be smaller, close to one access per search. However,
the search cost through overflow chains within nodes may be much higher than with MLTH. When the index
attained the maximal size (one page), node sizes grow indeed at least proportiondly to the file size.

VTT. CONCLUSION

Multilevel trie hashing is a new access method for large ordered and dynamic files. The method applies
when the usage of the basic trie hashing is inconvenient. It is based on sophisticated properties of tries,
which do not seem to be known yet. Performance analysis shows that two accesses per key search suffice for
largest practical files. This makes the method usually faster than a B-tree. As the agorithms are simple to
implement and fast, the method should reveal among the most practical known.

A prototype implementation of MLTH in Pascal is presented in /ZEG86/. Present work concerns deeper
behavior analysis under various conditions. Future work should concern the concurrent usage of MLTH files
and the recovery, on the basis of /ELL83/ and /TR083/. Also, one should study the design of variants
optimizing the load factor, gpplying the ideas of "overflow”, of uneven splitting etc. that worked well for B-
trees. Finally, one should extend MLTH to the multi-key case.

Acknowledgements

We thank Dr. Vidyasankar for helpful comments,

REFERENCES

IBAY72/ Bayer, R., Me. Creight, E. Organization and maintenance of large ordered indexes. Acta
Informatica, 1, 3, (1972), 173-189

IBAY 77/ Baycr.R., Unicrauer, K. Prefix B-Trees. ACM TODS. 2,1,(Mar 1977), 11-26.

/BRI5Y/ Briandais (de 1a), R. File Searching Using Variable Length Keys. Proc. of Est. Joint Comp. Conf,
205-298.

/BURS83/ Burkhard, W. Interpolation-Based Index Maintenance. PODS 83.ACM, (March 1983), 76-89.
/COM79/ Comer, D. The ubiquitous B-tree. ACM Comp. Surv. 11, 2 (June 1979), 121-137.

/IDAT86/ Date, C., J. An Introduction to Relational Database Systems. 4-lh cd,, Addison-Wedey,
1986,639

/ELL83/Ellis, C., S. Extendible Hashing for Concurrent Operation and Distributed
Data. PODS 83. ACM, (March 1983), 106-116.

[FAGT79 Fagin, R., Nievergdt, J., Pippenger, N., Strong, H.R. Extendible hashing - a fast access method
for dynamic files. ACM-TODS, 4, 3, (Sep 1979). 315-344.

/FLA83/ Ph. Faolet; On the Performance Evauation of Extendible Hashing and Trie Searching. Acta
Infonnaica, 20, 345-369 (1983).

/FREG0/ Fredkin, E. Trie Memory, CACM. 3,490-499.

/GON84/Gonnet, G., H. Handbook of ALGORITHMS and DATA STRUCTURES. Addison-Wedey,
19%4.

/KNU73/ Knuth, D.E. : The Art of Computer Programming. Addison-Wedey, 1973.

/KRI84/ Krishnamuny, R., Morgan S., P. Query Processing on Persona Computers - A Pragmatic
Approach, VLDB-84, Singapore (Aug. 1984), 26-29.

/ION8Y/ de Jonge, W., Tanenbaum, A., S, Van de Riet R. A Fast, Tree-based Access Method for
Dynamic Files. Rapp IR-70, Vrije Univ. Amsterdam, (Jul 1981), 20.

/LART78/Larson,P.,A. Dynamic hashing. BIT 18. (1978). 184-201.

/LAR82a/ Larson. P., A. A single file version of linear hashing with partia expansons. VLDB 82, ACM,
(Sep 1982). 300-309.

/LIT78/Litwin, W. Virtua hashing : adynamicaly changing hashing. VLDB 78. ACM, (Sep 1978),
517-523.

/LIT80/Litwin, W. Linear hashing : A new tool for files and tables addressing. VLDB 80, ACM, (Sep
1980),

212-223. /JUTS/ Litwin.W. Trie hashing. SSGMOD 81. ACM. (May 1981).
19-29.

/LIT84/ Litwin, W. Data Access Methods and Structures to Enhance Performance. Database
performance. Slate of the An Report 12:4. Pergamon Infotech, 1984,93-108.

/LIT8Y Litwin, Witold. Trie hashing : Further properties and performances. Int. Conf. on Foundation of
Data Organisation. Kyoto, May 1985. Plenum Press.

/LIT86/ Litwin, W., Lomet, D. Bounded Disorder Access Method. 2nd Int. Conf. on Data Eng. |EEE,
Los Angeles, (Feb. 1986).

/LOM79/ Lome, D... B. Multi-table search for B-tree Files. ACM-SIGMOD, 1979, 35-42.
/LOM8L/ Lomet, D. Digita B-trees. VLDB 81. ACM, (Sep 1981), 333-344.

/LOM83a/Lomet, D. Bounded Index Exponential Hashing. ACM TODS, 8, 1. (Mar 1983), 136-165.

/MULS8Y Mullin, j., K. Tightly controlled linear bashing without separate overflow storage. BIT, 21,4,
(1891), 389-400.

INIE84/ Nievergelt.J., Himerberger, H., Sevcit, K.. C. The Grid File: An Adaptable, Symmetric Multi-
key File Structure. ACM TODS, (March 1984).

/ORES83/ Orensiein, J. A Dynamic Hash File for Random and Sequential Accessing. VLDB 83, (Nov
1983). 132-141.

/OUKS83/ Ouksdl, M. Scheuerman, P. Storage Mapping for Multidimensional Linear Dynamic
Hashing. PODS 83. ACM, (March 1983), 90-105.

/RAM84/ RamamonohanaraO, K., Sacks-Davis, R. Recursive Linear Hashing. ACM-TODS, 9, 3, (Sep.
1984).

/REG82/ Regnier, M. Linear hashing with groups of reorganization. An agorithm for files without
history. In Sheuennann P. (ed) : Improving Database Usability and Responsiveness, Academic Press, (1982).
257-272.

/ROS81/Rosenberg, A., L.,.Snyder,L. Time and space optimality in Btrees. ACM-TODS, 6,1 (1981),
174-193.

/SAM84/ Samet, H. The Quadtree and Related Hierarchical Data Structures. ACM Computing Surveys,
16, 2 (June 1984), 187-260.

/SCH8Y/ Scholl, M. New File Organizations Based on Dynamic Hashing. ACM TODS, 6, 1, (March
1981), 194-211.

/SHO85/ Shou-Hsuan Stephen Huang. Height-Balanced Trees. ACM TODS, 10,2 (1985), 261-284.
[TAM82/ Tamminen, M. Extendible hashing with overflow. Inf. Proc. Lett. 15, 5,1982,227-232.

/ITOR83/ Torenvliet, L., Van Emde Boas, P. The Reconstruction and Optimization of Trie Hashing
Functions. VLDB 83, (Nov. 1983), 142-157.

/TRE8S/ Tremblay, JP., Sorenson, P., G. An Introduction to Data Structures. 2nd ed., McGraw-Hill,
1984, 861.

/TR081/ Tropf, H., Herzog, H. Multidimensiona range search in dynamically balanced trees. Agnew.
hif.2, 71-77.

/WIES83/ Wiederhold, G. Database design. Mcdraw-hill Book Company, 1983.
IYAQ78/Y a0, A., C. On random 2-3 trees. Acta Inf. 18, (1983), 159-170.

[ZEG86/ Zegour, D . Implementation du hachage digital multiniveaux. Techn. Rep.. (Sep. 1986). INRIA.

