Adaptation of trie hashing for distributed environments( Extended abstract)

Adaptation of trie hashing for distributed environments.
( Extended abstract )

DR. D.E ZEGOUR
National Computing High School, Algiers

D zegour@ini.dz|

Wwww.multimania.com/zegour|

This last decade a new class of data structures, named Scalable Distributed Data
Structures (SDDS), was born totally devoted for the multi computers. They are based on
client/server architecture. The following properties characterize the SDDS :-
Distribution of the file buckets on the servers, - No a main server, - No dialogue
between the clients. Each client owns usually an image of the file. The clients can make
addressing errors. The client image is updated gradually until obtaining the real image.
They are updated using messages called Image Adjustment Messages (IAMs).

Currently, there are two classes of SDDS methods quite distinct : LH-based SDDS and
RP-based ones. LH-based SDDS [Lit 93] do not preserve the order of records. They use
some information on level to clients to address the file usually distributed on several
servers. RP-based SDDS [Lit 94] preserve the order of records. RP*N uses no index and
operates simply with multicast. RP*C uses a client index with limited multicast. RP*S
uses a servers index with multicast optionally. it was shown that files SDDS can be
much faster and larger than traditional files.

Trie hashing (TH) [Lit 81] is one of the fastest access methods for the mono key,
ordered and dynamic files. The technique uses a hashing function, which is variable
and represented by a digital tree (trie) which grows and retracts according to the
insertions and suppressions. Previously, the technique had known much successes.
Several works were devoted to it the ten years which followed its creation. Why not to
distribute such a powerful file structure? Such is our concern in this paper.

There are several manners of representing the access function generated by TH in
memory. The compact representations (CTH) we have suggested before [Zeg 94] make


mailto:D_zegour@ini.dz
http://www.multimania.com/zegour

Adaptation of trie hashing for distributed environments( Extended abstract)

it possible to double the files addressed by the standard representation (TH) for the
same memory capacity. Moreover, for a distributed environment this option is
undoubtedly more interesting, in particular for the transfer of the parts of the tree from a
site to another, an operation which is frequent in our scheme. The idea of compact
representations is to represent the links in an implicit way to the detriment of algorithms
of maintenance slightly longer than those of the standard method (TH). The method
consumes only 3 bytes per file bucket, what makes it possible to address millions of
articles with a small memory capacity.

The question in this paper is to distribute CTH (Compact trie hashing) relatively to the
properties of SDDS. We will present the proposed scheme and will show its validity.
The results obtained show that the CTH* scheme is promising for the following
reasons: - Order-preserving, - Practically without multicast, -Three bytes are sufficient
to address a server, - The transfer of some bytes is enough for the updating of trees on

the level to the clients.

Below, we describe the distribution of CTH on several sites through an example. Then,
we present examples of searching and insertion of keys by various clients. A simulation
model is presented followed by a dump screen showing the clients and the servers.

Finally, two variants of the method are briefly presented and a conclusion is given.

The concept of scalable distributed compact trie hashing (CTH*)
On the level of each client there is a partial digital tree from which any operation on the
file is started. Any client can enter in scene constantly with an empty tree (| 0). As
symbol ‘| designates the largest digit, all the keys are mapped initially in server 0.
During the searching phase, commune to all the operations, emanating from a client the
tree is updated gradually until obtaining the real tree. On the level of each server there
are: - A partial digital tree ; - A bucket containing the records of the file ; - An interval
[Min, Max] for this server. The expansion of the file is done through collisions. At each
collision there is distribution of the file ( splitting of the server) on a logical server. The
digital tree of server | is created or extended to each division of server I. It thus keeps

the trace of all the splitting on this server. The intervals of the two servers are also



Adaptation of trie hashing for distributed environments( Extended abstract)

updated. The digital trees are represented in a preorder sequential form. The system is
Initialized firstly only with server 0 with an empty bucket, the largest possible interval
[Small, Large] and the tree: | 0. We suppose that Small is the smallest possible key and
Large is the largest one. The number of servers is conceptually infinite. The server can
be determined in a static or dynamic way. One can have several logical servers for the
same physical server.

This new scheme could be similar to the one of the method DRT [KW94].

Ilustration Example
The following figure gives the final states of clients and servers after the insertion of
the following sequence of the 25 keys (strings) by the corresponding clients (4 clients):
(1 js), (1 hw), (3 ¢), (2 gwmr), (3 @), (2 km), (4 zur), (1 ewg), (3 lewhv), (2 nrq), (3 mf),
(4 pem), (4 rl), (2 bagyg), (3 v), (1)), (2 gcm), (4 czxav), (2 Ihgd), (3 z2), (1 Irz), (3
kiyfg), (4 pbtpr), (3 hpqtp), (4 h)
We suppose that the capacity of a bucket ( server ) is equal to 4.

Clients
1 2 3 4

e0g4k112|6 e0g4kIn2r3|S c0j1k7n2r3|s cOhl1k8n2|3
Servers
e0g4|1 h1j8k7]2 12n6|3 r3|S 4 E |6 17 E
bovg h lewhr phtpr z A mf kiyfgz

C hpgtp ]-hgd pem TwImr z nrog km is
cExay howr Iz qcm zur

owE rl

1] 1 2 3 4 = 6 7 o

[_l|-e] [gl.h]] [KkJ.1]  [npr]]  [el.g]] [xLl] [, n[] LK1 [hj]
Figurel. Clients and servers

Figure 1. shows 4 clients and 9 servers. Each client has his own access function
represented by a digital tree. The file is distributed on 9 servers at a rate of a bucket per

server. Each server has an interval indicating the set of the possible keys on this server,



Adaptation of trie hashing for distributed environments( Extended abstract)

a digital tree keeping the trace of the splitting and a table containing the keys inserted.
The client tree represents its image of the file. Thus, for client 1 with digital triee 0 g 4
k112]6 the set of the keys is divided as follows: [Small, €] : 0;]e,g9]:4;[g9,K]:1;
1k, 1] :2, ]I, Large] :6. This client thus “sees’ only servers 0, 4, 1, 2 and 6. For client 3,
with thetreeg0j 1 k7 n2r 3|5, there is the following partition: [Small, g]: 0; ]g,
1 0,K:7; 0k, n): 25 [, 1] : 3 ]r, Large] :5. None of the two partitions is the real
partition of the file. If client 1 searches key ' ¢', it finds server 4. If client 1 searches
key ')’, it find firstly server 1. As'j’ is not in the interval of server 1, an addressing error
appears. The client then completes its digital tree according to the one of server 1. Its
tree becomes e 0 g4 h 18k 712|6. The application again of the access function
gives us now server 8, i.e. the good. Let us suppose now that client 2 ( with the tree e O
g4 kln2r3]|5)wants to insert the key ' rym'. The application of its tree to this key
gives us server 3. Although the tree of client 2 does not reflect the real image of the file,
client 2 finds the good server since key ' rym' is in the interval of this latter. Server 3
cannot contain the new key as its table is full. A collision thus occurs on this server.
The collision is solved as follows: one considers the ordered sequence formed of the
keys of server 3 and of the new key, that is to say 'pbtpr’, ' pem’, ' gcm’, ' rl', ' rym'. Then,
we determine the smallest sequence of digits which makes it possible to distinguish the
key from the medium (‘gcm’) and the last key (‘rym’). It is thus 'q' this sequence. The
tree of server 3 which is r 3 | 5 thus becomes q 3 r 9 | 5. Server 9 is created with an
empty tree (| 0) and with the interval ]r, Large] . The keys are divided between servers
3 and 9 so that the keys strictly higher than ' g' migrate in the new server. Thus after
splitting, the keys “pbtpr’, ‘pem’, and ‘qcm’ remain in server 3 whereas the keys ‘rl” and
‘rym’ go towards server 9. Let us consider the following case which is a rare event
(proven by simulation). Let us try to insert the key 'zz’ by client 1. The application of
CTH (Transformation Key to a server address ) on client 1 (withtreee0g4k112|6)
returns server 6. Key ‘zz’ does not belong to the interval of this server. As server 6 has
an empty tree (] 6) , one is in the presence of a dead end. It is solved by a multicast
which returns us server 5 in which will be inserted the key 'zz’. The client tree is

updated consequently and becomes e 0 g 4 k 1 12| 5. Multicast is also used when a



Adaptation of trie hashing for distributed environments( Extended abstract)

client meet the Nil node when applying CTH. It has then recourse to the multicasting

which delivers to it a server address I. It replaces then Nil by I in its tree.

Simulation Model
Each client is materialized by a table which contains its tree. The servers are compared
to the blocks of a file which evolves in a linear way dynamically according to the
collisions. A server contains 3 fields: bucket for the keys, an interval and a local tree
represented by a table. We considered a very small capacity of the blocks ( b=4). That
makes it possible to have a great number of servers in order to test the validity of the
scheme suggested and analyze some parameters. As the load factor is the same as for
the other file structures (B-trees, RP, ...) for random insertions, i.e. 70%, then for the
same number of servers generated(Ns), the number of inserted articles (N) is given by
the formula N = (B * Ns)*70%. Then, the file structure will have the same behavior for
the insertion of 500 records with a capacity of block equal to 4 as for the insertion of
500 000 records with a block capacity equal to 4000.
Clients : We considered 4 clients
Servers : Each server is a simulated by a file bucket. The capacity of a server : b =4
keys.
Multicasting is simulated by a loop on the existing servers : For i :=1to N : If Key is
in the interval of server Si : Stop Endfor
Operations : Construction of a data file with pairs ( Client, Key ). Clients are randomly
generated in set { 1, 2, 3, 4 }. The records are reduced to their keys. Keys are strings
randomly generated. A run consists to insert n pairs (client, key) from a data file. We
can see the states of clients and servers at the end of a run.
Verification : A program allows to verify the validity of the proposed scheme. A first
launch allows to search all the keys inserted by each client. The client trees are then
updated. In a second launch we notice no modification on the client trees.
Trace : We can follow the complete trace of the program, What allows us to see the
mechanism of the construction of trees and the distribution of the file buckets.



Adaptation of trie hashing for distributed environments( Extended abstract)

Screen Dump
Figure 2. shows the states of clients and servers after the insertion of 3000 keys with a
server bucket capacity equal to 4. 1064 servers are generated with a load factor of
70,49%.

Scalable Distributed Compact Trie Hashing
Variante 1 : Client Trees, Server trees
D.E ZEGOUR

Number of keys : 3000
Server bucket capacity : 4
Random Insertions

Clients

Client 1
abg0335ca282164d127e729gf33349kn28045811830c243280234s110t97u4l5walb4
320207 bat22244bk149141dql17481em347650ge 144 763 ia 664 297 k 86148 mj 540332 n
q43525ph 314264 918159613543 wi35923582cdf6355f2839g123h838)f115431k412]1
248 m 216 n592rg 782541124 ud 845520 v 246 x b 817 627 421 d a 69 ¢ 60 d 394 f 373 h a 239 213
142 089 p 460 q 448 s3541286 u198vd959686 173 ech_23620353dj307270e188f169¢]l
131278ib 77233 k1161848 0427 p56r317t92v 456 x 341243 fa4c208f143hn139416i 327
226 k¢ 857 752 1 ¢ 737 605 n 68 0 468 p 308 r b 133 105t 28 u i 515 263 v 261 w 200 x h 273 985 y a
913478 447gd14f94h30it129837)7741b657 0499450 m443n351qil06374r338s249tg
784 600 vn 163854 wa 778 476 x j 148 810305h b g201432250¢c218ei117485gh479310ie59
290 k 186 2791161 n310n 240609 pt541 746 qm _ 159 847 741 r 670 s 101 t 451 u n 329 762 x
203y j166391z5324798 Nilial0c95d53ef529379f291g142h112jf21503ki325691na
288n590437 p 197 rf9064 sn 37 677tm 621 457 u 377 v 236 x0136876y679497jb9db71t507
8734499145198 466 1b 350275 m80nj902 683 0k 673544 qe358289r287s247uel77r
155711 v 55w 36 x 333y d227 172114 ka2 b 710 ¢ 429 d 304 e 147 ft 735 565 g 356 h 202 j h 176
302 k121 1360m272n58 0571 pm 694992 q51ri7683125119th 587 0406 109va 71298 w 191
X 1628977 y 384502 1b 35d316 g435i 185 ) 156 k 655 m 554 n 260 0 196 p 398 q 83 r u ¢ 680 397
Nilu 182 v 62 w616y d516 674 487 ma34ej16206hc 126660 jh 641219 m 187 n54p381ql296
492 r210s361tq 281648 u594 w189 x11365nbil12531¢530d221f532hm108t473440j ]
385602 kb 383165m99n85r151ti132550u439vt433 760w 709y 313267 0d41el19gc638
483 h420i1342k301 m211qj96238r179t76vj403299 w268 xq 128608y 344292pa8b526¢
461 d 346 g 157 h574i1a552508 1134 032rn88583s436u348 w306 x366y809537qgb27cc
560 418 d j 404 315 f258 h 18 j 39 k 199 1 130 m g 564 284 n 26 0 841 g e 724 597 r 362 s 920 u 748 v
494 x 107 y 705430 rb h 1588 d 393 f63i50) 146 k j 509 792 1 775 m p 441 409 n 111 p h 47 q 459
916 q276r93t75u253vd715389w 192644 x378ze175125Nilsbh 15498 cp 472311d225¢g
5361 150 j m 380 506 k 230 m 70 0 s 259 523 p i 469 Nil t d 67 528 u 0 365 785 v 607 w 424 x 152 496 t
ch52556ef4902629g215149m2050p 477331 pn120517q214sn84q794623t345v 193 wa
603 405368 ub 11 d f194 887 e 174 ft 102 u 557 538 g 352 i | 160 318 j 57 | m 386 321 n 266 p i 445
3000 222r220u118171vd5e 74 f573 ga562255h242i180j45ke 9108391812m 716 nc 708
470 0423 p 326 r k 269 524 5 265 u j 245 728 v h 584 475 x 104 y g 363 964 714 wh 25¢c n 190 428 e
2411140 h 229461261336 m231p 178 q 122 r 601 v f103 488 w 257 x 662y 504 399 x ¢ ¢ 35293
224ei173661f449gd549452h390i170j137k758n 100087 p66rh6785631522u251v201w
581 357yb40d 153 eq81804ha29542j3231b 757 Nilnd 138 684 p334rk13p591413v 237w
162 ya91585387zc309ec158395fb2942179g79hb713465i343j271k671 m256r195ud
184 y 548 228 v 135 w 277 x 209 z n 501 467 Nil | Nil



Adaptation of trie hashing for distributed environments( Extended abstract)

Servers

Server 0

Number of keys : 3

Bucket : aac aafs aagtjhy

Tree :aag0q1013878bg639335ca282164d127e7213324bb2217e6j4q2]|1
Interval : > , <=aag|

Server 1

Number of keys: 3

Bucket : raect rajin raxrd

Tree :ralbh987588d393f63n5047t15ullw5]|3
Interval : >q| , <=rq|

Server 2

Number of keys: 3

Bucket : kabsx kag kajw

Arbre :kaj21028b710c429d304j147m121p5851135ma3416012]|8
Interval : >j| , <=kaj|

Figure 2 : screen dump
Variants of CTH

We can define the two variants :

CTH* with only the Client Trees, i.e. without server trees and without
multicast(CTH*CT): On the level of each client there is a partial digital tree from which
any operation on the file is started. On the level of each server there are a bucket
containing the records of the file and an interval [Min, Max]. There is a central server
which contain the real tree.

CTH* Without Server Trees(CTH*WST) : It is the same scheme as that proposed,
except that there is no tree on the level of the servers. If the key is not in the interval of

the server, one uses multicasting in order to find the good server.

Conclusion
Contrary to the majority of the methods existing, the proposed method provides the
order of distributed files and then facilitates the range queries operations and the
ordered traversal of files. Moreover, the following properties make of our method a
promising opening towards a new class of SDDS : - Order-preserving, - Practically
without multicast -Three bytes are sufficient to address a server, - The transfer of some
bytes is enough for the update to the trees on the level to the clients, -Access
performances should exceed the traditional files and some competitive scalable



Adaptation of trie hashing for distributed environments( Extended abstract)

distributed data structures.

We proposed the method through only the mechanism of construction. It would be of
course more complete to study the other operations in particular the suppression and the
range query. Further work should concern the implementation of the communication
protocol to test the method in a real network and proceed to deeper analysis of
performance.

A basic scheme and two variants have been proposed. According to the application, the
one of the scheme can be used : CTH* works with a weak percentage of multicast,
almost null. CTH*CT uses the real image of the tree indexing all the servers and thus
works without multicast. CTH*WST works with an intense use of multicast but do not
uses trees on servers. Further research should concern also many other variants as it was
made in LH*. As example, It will be interesting to study the security problem. Now, the
method is in its implementation phase under the Unix platform in the context of
database query and transaction processing. It constitutes the storage layer of the project
"ACT 21' [Zeg01] which consists to the realization of a parallel data bases management
system based on the concept of actors.

Acknowledgements

We would like to express special thanks to M.S Birech, Y. Laalaoui, A. Bekkouche and
A. Khaled (students), who contributed by their reflection to the elaboration of some
algorithms. A major expression of thanks must go to my dear colleagues W. Litwin and
G. Lévy (Paris Dauphine University) for their advice and helpful comments and
suggestions.

Some references

[Lit 81] Litwin, W. Trie hashing. SIGMOD 81. ACM, (May 1981), 19-29.

[Lit 93] Litwin, W., Neimat, MA., Schneider, D. LH*: A Scalable Distributed Data Structure. (Nov.
1993). Submitted for journal publ.

[Lit 94] Litwin, W., Neimat, MA., Schneider, D. RP* : A Family of Order Preserving Scalable Distributed
Data Structures. Proc. Of 20 th conf. VLDB, chile 1994

[Zeg 94] D.E Zegour, W. Litwin. Trie hashing with the sequential representations of the trie.
International Revue of Advanced Technologies. CDTA, Alger.

[KW94] : B. Kroll, P. Widmayer. Distributing a search tree among a growing number of
processors. ACM Sigmod International Conference On management of Data, May 1994,

Sigmod Record 23(2) : 265-276.

[Zeg01] D.E Zegour. General Presentation of the project ‘ACT’. Internal Report. National Computing
High School, Algiers, 2001.



