
O-notation

D.E ZEGOUR
École Supérieure d'Informatique

ESI

D.E ZEGOUR - ESI 2

O-notation

The execution time of a program depends on the following factors:
- Program data
- Quality of the code generated by the compiler
- Machine characteristics (speed and nature of instructions)
- Algorithm complexity

T(n) = c f(n)
n : number of data
c : constant grouping the mentioned factors
f(n) : growth rate of T(n)

Introduction

Example : T(n) = c n2
T(n) could be the number of executed instructions.

In practice, average time is often
challenging to determine.

Try to find the average case, otherwise
find the worst-case scenario.

D.E ZEGOUR - ESI 3

O-notation

It will be said that T(n) est O(f(n)) if there exist c > 0 and n0 > 0 such that T(n) ≤ c f(n) for
all n ≥ n0.

Definition

The constant depends on factors related to the machine and the code.

A program with an execution time of O(f(n)) is a program that has f(n) as its growth rate.

It can also be said that f(n) is an upper bound on the growth rate of T(n).

D.E ZEGOUR - ESI 4

O-notation

T(n) = O(n2) , this means
There exist a constant c > 0 and a constant n0 > 0 such that for n > n0
 T(n) ≤ c n2

Example

Let’s suppose that T(0) = 1, T(1) = 4 and in general case
T(n) = (n + 1)2

Let’s prove that T(n) is O(n2)

Therefore, one must find constants c > 0 and n0 > 0 such that for any n > 0 , we have
T(n) <= c n2 ,
which means (n + 1)2 <= cn2

D.E ZEGOUR - ESI 5

O-notation

(n + 1)2 ≤ cn2

Example

Therefore for c = 4 and n0 = 1 we have T(n) ≤ cn2

(or (c-1)n2 - 2n - 1 ≥ 0

n2 + 2n + 1 <= c n2

(c-1) n2 - 2n - 1 ≥ 0

Delta = 4c

For c = 4, Two roots 1 and -1/3

T(n) = O(n2)

D.E ZEGOUR - ESI 6

O-notation

To specify the lower bound of the growth rate of T(n), we will use the notation Ω(g(n)), which means: there exists
a constant c > 0 such that:

T(n) ≥ c g(n) for an infinite number of values of n.

Ω-notation

Example : T(n) = n3 + 2n2 is Ω(n3) because for c = 1 T(n) ≥ n3 for n = 0, 1, 2,

D.E ZEGOUR - ESI 7

O-notation

If T1(n) = O(f(n)) and
T2(n) = O(g(n)) are the execution
times of two program fragments,
P1 and P2,
then the execution time of P1
followed by P2 is
T1(n) + T2(n) = O(Max(f(n), g(n))

Operations : Sum rule

T1(n) + T2(n) ≤ c1 f(n) + c2 g(n) for n0 = max (n1, n2)
 ≤ (c1 + c2) max (f(n), g(n))

Consequence : If g(n) ≤ f(n) for any n > n0, then (f(n) + g(n)) = O (f(n))
Example : O(n2 + n) = O(n2)

Proof:

T1(n) = O(f(n)) ==> There exist c1 > 0 and n1 > 0 such that
for any n > n1: T1(n) ≤ C1 f(n)

T2(n) = O(g(n)) ==> There exist c2 > 0 and n2 > 0
such that for any n > n2: T2(n) ≤ C2 g(n)

Therefore, there exist c = c1 + c2 and n0 = max(n1,n2)

D.E ZEGOUR - ESI 8

O-notation

 -It is used to calculate the execution time of a sequence of steps in a program.

Operations : Sum rule

P1

P2

P3

O(n2)

O(n3)

O(nlog2(n))

O(Max(n2, n3)) = O(n3)

O(Max(n3, nLog2(n)) = O(n3)

D.E ZEGOUR - ESI 9

O-notation
Operations : Product rule

If T1(n) = O(f(n)) and
T2(n) = O(g(n)),
then T1(n) T2(n) = O(f(n) g(n))

Proof

Consequence : O(c f(n)) = O(f(n)) if c > 0.
Example : O(n2/2) = O(n2)

T1(n) = O(f(n)) ==> There exist c1 > 0 and n1 > 0 such
that for any n > n1: T1(n) ≤ c1 f(n)

T2(n) = O(g(n)) ==> There exist c2 > 0 and n2 > 0
such that for any n > n2: T2(n) ≤ c2 g(n)

T1(n) * T2(n) ≤ c1 * c2 f(n) g(n) for n > n0 with n0 = max(n1, n2)

Or T1(n)*T2(n)=O(f(n)g(n)).

Therefore, there exist c = c1 * c2 and n0= max(n1, n2) such
that T1(n) * T2(n) ≤ c f(n) g(n).

D.E ZEGOUR - ESI 10

O-notation

1. Assignment, reading, or writing: O(1)

Measuring iterative algorithms

4. Loop: Rule of product.
It is the product of the number of iterations of the loop by the longest possible time for
the execution of the body.

2. Sequence of steps: rule of sum.
Therefore, the time of the sequence is determined by the step with the longest execution time.

3. Alternative: consider the worst-case scenario.

D.E ZEGOUR - ESI 11

O-notation

(1) FOR I := 1 , N - 1
(2) FOR J := N , I + 1 , - 1
(3) IF ELEMENT (A [J - 1]) > ELEMENT (A [J])
(4) Temp := ELEMENT (A [J - 1]) ;
(5) ASS_ELEMENT (A [J - 1] , ELEMENT (A [J])) ;
(6) ASS_ELEMENT (A [J] , Temp) ;
 ENDIF
 ENDFOR
 ENDFOR

Measuring iterative algorithms : Example

(4), (5), and (6) each take O(1).

Rule of sum: (4), (5), and (6) is O(Max(1, 1, 1)) = O(1).

For the IF statement, O(Max(1, 1)) = O(1)

Loop (2) to (6): body: O(1); loop: O(n-i)
Rule of product: O((n-i) O(1) = O(n-i) .

Loop (1) to (6): body: O(n-i) or O(n) (previous result);
loop: O(n-1) or O(n)
Rule of product: O(n) O(n-i) = O(n2)Bubble sort of an array A[1..n]

