O-notation

D.E ZEGOUR
Ecole Supérieure d'Informatique
ESI

O-notation

Introduction

The execution time of a program depends on the following factors:

- Program data

- Quality of the code generated by the compiler

- Machine characteristics (speed and nature of instructions)

- Algorithm complexity In practice, average time is often
challenging to determine.

T(n) = c f(n)
n : number of data Try to find the average case, otherwise
c : constant grouping the mentioned factors find the worst-case scenario.

f(n) : growth rate of T(n)

Example : T(n) =c n2
T(n) could be the number of executed instructions.

O-notation

Definition

It will be said that T(n) est O(f(n)) if there exist ¢ >0 and nO > 0 such that T(n) < c f(n) for
all n = n0.

A program with an execution time of O(f(n)) is a program that has f(n) as its growth rate.

It can also be said that f(n) is an upper bound on the growth rate of T(n).

The constant depends on factors related to the machine and the code.

O-notation

Example

T(n) = O(n2), this means
There exist a constant ¢ >0 and a constant nO > 0 such that for n > n0
T(n) <cn2

Let’s suppose that T(0) =1, T(1) =4 and in general case
T(n) = (n + 1)2
Let’s prove that T(n) is O(n2)

Therefore, one must find constants ¢ >0 and n0 > 0 such that for any n >0, we have
T(n) <=cn2,
which means (n+ 1)2<=c¢cn?

O-notation

Example

(n+1)2<cn?

nN2+2n+1<=cn?

(c-1)n2-2n-120
Therefore for c =4 and n0 = 1 we have T(n) < cn? T(n) = O(n?)

(or (c-1)n2-2n-120
Delta = 4c

For c =4, Two roots 1 and -1/3

O-notation

(Q)-notation

To specify the lower bound of the growth rate of T(n), we will use the notation Q(g(n)), which means: there exists
a constant ¢ > 0 such that:
T(n) 2 c g(n) for an infinite number of values of n.

Example : T(n) = n3+ 2n2is Q(n3) because forc=1 T(n)2n3forn=0,1, 2,

O-notation

Proof:

T1(n) = O(f(n)) ==> There exist c1 >0 and n1 > 0 such that

Operations : Sum rule
forany n>nl:T1(n) < C1f(n)

If T1(n) = O(f(n)) and

T2(n) = O(g(n)) are the execution T2(n) = O(g(n)) ==> There exist c2 >0and n2 >0
times of two program fragments, such that for any n > n2: T2(n) < C2 g(n)
P1 and P2,

then the execution time of P1
followed by P2 is T1(n) + T2(n) < c1 f(n) + c2 g(n) for nO =max(nl, n2)

T1(n) + T2(n) = O(Max(f(n), g(n)) <(cl+c2) max(f(n), g(n))

Therefore, there exist ¢ =c1 + c2 and n0O = max(n1,n2)

Consequence : If g(n) < f(n) for any n>n0, then (f(n) + g(n)) =0 (f(n))
Example : O(n2+ n) =0(n2)

O-notation

Operations : Sum rule

-It is used to calculate the execution time of a sequence of steps in a program.

P1 O(n2
") O(Max(n2, n3)) = O(n3)

O(Max(n3, nLog,(n)) = O(n3)
P2 O(n3)

P3 O(nlog,(n))

O-notation

Proof

Operations : Product rule
T1(n) = O(f(n)) ==> There exist c1 >0 and n1 > 0 such

that for any n > nl1: T1(n) < cl f(n)
If T1(n) = O(f(n)) and

T2(n) = O(g(n)),

then T1(n) T2(n) = O(f(n) g(n)) T2(n) = O(g(n)) ==> There exist c2>0and n2 >0

such that for any n > n2: T2(n) <c2 g(n)

T1(n) * T2(n) < cl1 * c2 f(n) g(n) for n > n0 with n0 = max(n1, n2)

Therefore, there exist ¢ =cl1 * c2 and n0= max(n1, n2) such
that T1(n) * T2(n) < c f(n) g(n).

Or T1(n)*T2(n)=0(f(n)g(n)).

Consequence : O(cf(n))=0(f(n)) ifc>0.
Example : O(n%/2) = O(n2)

O-notation

Measuring iterative algorithms
1. Assignment, reading, or writing: O(1)
2. Sequence of steps: rule of sum.

Therefore, the time of the sequence is determined by the step with the longest execution time.

3. Alternative: consider the worst-case scenario.

4. Loop: Rule of product.
It is the product of the number of iterations of the loop by the longest possible time for

the execution of the body.

O-notation

Measuring iterative algorithms : Example

(1) FORI:=1,N-1 (4), (5), and (6) each take O(1).
(2) FORJ:=N,I+1,-1
(3) IFELEMENT(A[J-1])>ELEMENT(A[J]) Rule of sum: (4), (5), and (6) is O(Max(1, 1, 1)) = O(1).
(4) Temp := ELEMENT (A[J-1]);
(5) ASS_ELEMENT (A [J-1],ELEMENT(A[J])); ForthelF statement, O(Max(1, 1)) = O(1)
(6) ASS ELEMENT (A[J], Temp);

ENDIF Loop (2) to (6): body: O(1); loop: O(n-i)

ENDFOR Rule of product: O((n-i) O(1) = O(n-i) .
ENDFOR

Loop (1) to (6): body: O(n-i) or O(n) (previous result);
loop: O(n-1) or O(n)
Bubble sort of an array A[1..n] Rule of product: O(n) O(n-i) = O(n?)

