D.E ZEGOUR

École Supérieure d'Informatique

ESI

Method

To measure a recursive algorithm

- Find the recurrence equation
- Solve it

Recurrence equation

 $T(n) = a$ if $n \leq 1$ $= T(n-1) + b$ Otherwise

Sort (L, n) { Suppose $n = 2^k$ } IF $n = 1$ Sort $:= L$ ELSE $L1 := L[1..n/2]$ $L2 := L[n/2+1..n]$ Sort := Merge (Tri(L1, n/2), tri(L2, n/2)) ENDIF

 $T(n) = a$ if $n=1$ $= 2$ T(n/2) + bn Otherwise

Resolution

In general, there are three methods to solve recurrence equations:

a) By substitution (expand the recurrence).

b) Guess a solution and prove it by induction..

c) Use solutions from known recurrence equations

Resolution by substitution (Example 1)

Fact(n) IF $n \leq 1$ Fact $:= 1$ ELSE Fact $:= n *$ Fact(n-1) ENDIF

It's O(n) T(n) ⁼ ^a If ⁿ [≤] ¹ $T(n-1) + b$ Otherwise

Recurrence equation

 $T(n) = b + T(n-1)$ $= b + (b + T(n-2))$ $= 2b + T(n-2)$ $= 2b + (b + T(n-3)) = 3b + T(n-3)$ $=$... $=$ (ib) + $T(n-i)$ $=$... $= (n-1)b + T(1)$ $=$ nb $-$ b $+$ a

Measuring recursive algorithms

Resolution by substitution (Example 2)

Sort (L, n) { Suppose n = 2^k }

Fn = 1

Sort := L

Sort := L

ELE

L:= L[n/21.n]

L:2 := L(n/22) + bn

= 1 T(n) + 2 bn

L:= L[n/21.n]

Sort := Me

Resolution by guessing (Example)

```
Sort (L, n) { Suppose n = 2^k }
       IF n = 1Sort := LELSE
           L1 := L[1..n/2]L2 := L[n/2+1..n]Sort := Merge ( Tri(L1, n/2), tri(L2, n/2))
       ENDIF
Measuring recursive algorithms<br>
Resolution by guessing (Example)<br>
To show that T(n) = O(n \log 2(n)), which means T(n)<br>
For given a and b starting from a certain rang n:<br>
\begin{bmatrix} \text{Sort } (L, n) \{ \text{Suppose } n = 2^k \} \\ \text{IF } n = 1 \\ \text{Sort := L} \end{bmatrix
```
 $T(n) = c_1$ if n=1 $= 2$ T(n/2) + c₂n Otherwise **(1)**

```
Recurrence equation
```
To show that $T(n) = O(n \log 2(n))$, which means $T(n) \le a$ n $log 2(n) + b$ for given a and b starting from a certain rang n:

 $-$ If n = 1, T(1) \leq b (we can take b = c₁).

- We assume $T(k) \le a k \log 2(k) + b$ for all $k < n$ and try to establish that $t(n) \le a$ n log2(n) + b.

Suppose $n \geq 2$, then from (1) we get: $T(n) \leq 2T(n/2) + c_2 n$ $≤ 2(a(n/2) log2(n/2) + b) + c₂ n$ $≤ a n log2(n) - a n log2(2) + 2 b + c₂ n$ \leq a n log2(n) - a n + 2 b + c₂n $\le a \, n \, \log(2(n) + b + (b + c_2 n - a n))$

Resolution by guessing (Example)

```
Sort (L, n) { Suppose n = 2^k }
IF n = 1Sort := LELSE
  L1 := L[1..n/2]L2 := L[n/2+1..n]Sort := Merge ( Tri(L1, n/2), tri(L2, n/2))
ENDIF
```
 $T(n) = c_1 \sin n = 1$ $= 2$ T(n/2) + c₂n Otherwise **(1)**

Recurrence equation

```
For T(n) to be \leq a n log2(n) + b, we need:
b + c_2 n - a n \le 0a n \ge b + c_2 na \ge (b + c_2 n) / n
```
For all $n \ge 1$ a $\ge b + c_2$

Therefore, $T(n) \le a$ n log2(n) + b if the following two conditions are satisfied:

 $b \geq c_1$ $a \geq b + c_2$

By choosing $b = c_1$ and $a = c_1 + c_2$, we conclude that for all $n > 1$:

 $T(n) \leq (c_1 + c_2) n \text{Log}(n) + c_1$

```
D.E ZEGOUR - ESI 8
In other words, T(n) is O(n \text{ Log}(n))
```
Resolution using known recurrence equations

1. Homogeneous equations a_0 t_n + a_1 t_{n-1} + ...a_k t_{n-k} = 0 (1) has as characteristic equation : $a_0 x^k + a_1 x^{k-1} + ... + a_k = 0$ Solutions in R : $r_1, r_2,r_k.$.

If all the solutions ri are distinct, then solution of (1) is $t_n = c_1(r_1)^n + c_2(r_2)^n + c_k(r_k)^n$

If rj is a repeated solution (with multiplicity m), then solution of **(1)** is $t_n = c_1(r_1)^n + c_2(r_2)^n + ... + (c_{j1}(r_j)^n + c_{j2}n(r_j)^n + ... + c_{j1}(r_j)^n) + ... + c_k(r_k)^n$

Remark : constants are determined by the initial conditions

Reminder : solution $t_n = c_1(r_1)^n + c_2(r_2)^n + \dots + c_k(r_k)^n$

Resolution using known recurrence equations

Homogeneous equation (Example)

 $t_n - 3t_{n-1} - 4t_{n-2} = 0$ for $n \ge 2$ $t_0 = 0, t_1 = 1$

Characteristic equation : $x^2 - 3x - 4 = 0$

Solutions : -1 et 4.

 $= c_1(-1)^n + c_2 4^n$

Initial Conditions $0 = c_1 + c_2$ $1 = -c_1 + 4c_2$

$$
c_1 = -1/5
$$
 et $c_2 = +1/5$

 $t_n = c_1(-1)^n + c_2 4^n$ $t_n = -(1/5)(-1)^n + (1/5)4^n$

It's $O(4^n)$.

Measuring recursive algorithms
 EXECUTS: Resolution using known recurrence equations
 EXECUTS: Alternations characteristic equation: Solutions in R :
 EXECUTS: Characteristic equation: Solutions in R :
 EXECUTS: C

Resolution using known recurrence equations

2. Non-homogeneous equations $a_0t^n + a_1t^{n-1} + ... a_kt^{n-k} = b_1^nP1(n) + b_2^nP2(n) + ...$ (a₀x^{k+a₁x^{k-2})} b_i : constants P_i : polynoms of degree d

Characteristic equation: $(a_0x^k + a_1x^{k-1} + ... a_k)(x-b_1)^{d1+1}$ r_1 , $(x-b_2)^{d^2+1}$... = 0

 $r_1, r_2,r_k.$ Solutions in R :

If all the solutions ri are distinct, then solution of (1) is $t_n = c_1(r_1)^n + c_2(r_2)^n + c_k(r_k)^n$

If rj is a repeated solution (with multiplicity m), then solution of **(1)** is $t_n = c_1(r_1)^n + c_2(r_2)^n + ... + (c_{j1}(r_j)^n + c_{j2}n(r_j)^n + ... + c_{j1}(r_j)^n) + ... + c_k(r_k)^n$

Remark : constants are determined by the initial conditions

Reminder : $a_0t^n + a_1t^{n-1} + ... a_kt^{n-k} = b_1^nPI(n) + b_2^nP2(n) + ...$

Reminder $t_n = c_1(r_1)^n + c_2(r_2)^n +c_k(r_k)^n$ Measuring recursive algorithms

Resolution using known recurrence equations

```
Non-homogeneous equation (Example 1)
```
Fibonacci sequence Fib(n) := Fib(n-1) + Fib(n-2) if $n > 1$ $Fib(0) = 0$, $Fib(1) = 1$

Recurrence Equation : $T(n) = T(n-1) + T(n-2) + b$ if $n > 1$ $T(n)$ = a otherwise

Non-homogeneous equation: $t_n - t_{n-1} - t_{n-2} = b = 1^n b$ $t_0 = 0, t_1 = 1,$

 $b_1 = 1$, $P_1 = b$, b is a polynom of degree 0

Characteristic equation : $(x^2 - x - 1)(x-1) = 0$

 $(x-r1)$ $(x-r2)(x-1) = 0$

 $r1 = (1 + \sqrt{5})/2$ $r2 = (1 - \sqrt{5})/2$ $r3 = 1$

Therefore $t_n = c_1 ((1 + \sqrt{5})/2)^n + c_2 ((1 - \sqrt{5})/2)^n + c_3 1^n$

Resolution using known recurrence equations

$$
t_n = c_1 ((1 + \sqrt{5})/2)^n + c_2 ((1 - \sqrt{5})/2)^n + c_3 1^n
$$

Initial conditions give c_1 = 1/ $\sqrt{5}$, c_2 = -1/ $\sqrt{5}$ et c3 = 0

Initial conditions $0 = c_1 + c_2 + c_3$ 1= $c_1(1 + \sqrt{5})/2 + c_2(1 - \sqrt{5})/2 + c_3$

 t_n = 1/ $\sqrt{5}$ ((1 + $\sqrt{5}$)/2) $^\mathsf{n}$ - 1/ $\sqrt{5}$ ((1 - $\sqrt{5}$)/2) $^\mathsf{n}$

 $0 = c_1 + c_2$ 1= $c_1(1 + \sqrt{5})/2 + c_2(1 - \sqrt{5})/2$

 $c_2 = - c_1$ $c_1(1 + \sqrt{5})/2 - c_1(1 - \sqrt{5})/2 = 1$ $c_1\sqrt{5} = 1$

It's **O((1 + √5)/2)ⁿ)**

$$
\qquad \qquad \text{or } \text{O}(1.6180339^n)
$$

Reminder : $a_0t^n + a_1t^{n-1} + ... a_kt^{n-k} = b_1^nPI(n) + b_2^nP2(n) + ...$

Measuring recursive algorithms

Resolution using known recurrence equations

Non-homogeneous equation (example 2) $t_n - 2t_{n-1} = n + 2^n$ $t_0 = 0$ $b_1 = 1$, $P_1 = n$; $b_2 = 2$, $P_2 = 1$

Reminder : r_i repeated solution (multiplicity m) $t_n = c_1(r_1)^n + c_2(r_2)^n + ... + (c_{j1}(r_j)^n + c_{j2}n(r_j)^n + ... + c_{j1}(r_j)^n) + ... + c_k(r_k)^n$

Characteristic equation : $(x-2)$ ($x-1$)² ($x-2$) = 0

Therefore $t_n = c_1 1^n + c_2 n 1^n + c_3 2^n + c_4 n 2^n$

Initial conditions give c_1 =- c_3 , c_2 and c_4 are arbitrary .

D.E ZEGOUR - ESI