
Linked Lists

D.E ZEGOUR
École Supérieure d'Informatique

ESI



Linked lists
Introduction example 

D.E ZEGOUR - ESI 2

Problem : choice of the data structure

If Array : not possible to define its size  

If Array : not possible to  precisely define 
its size even if n is known

Space allocation must be dynamic

Find all prime numbers from 
1 to n and store them in 
memory.

n : data to read



Linked lists
Concept of Static and Dynamic Allocation

D.E ZEGOUR - ESI 3

Space is allocated as the program executes

In technical terms, we describe this as 
the space being known at compile time

Space is entirely allocated at the 
beginning of a process

Static allocation Dynamic allocation

Otherwise, simulate them, meaning managing
 the space manually within a large array.

To perform this type of allocation, the user must have access 
to both space allocation and space deallocation operations.

If the programming language provides these capabilities, 
they can be used directlyIt ‘s therefore an array



Linked lists
Definition

D.E ZEGOUR - ESI 4

An item of an LL is always a structure with two fields :
-  Value field   : holding  the information
-  Address field : giving the address of the next cell

A linked list (LL) is a collection of dynamically 
allocated nodes (or cells) linked together

Each node is associated with an address

This introduces in the algorithmic language a new variable 
type: the POINTER type

An LL is characterized by the address 
of its first element. 

Nil represents an address that 
does not point to any node

Head

v1 v2 v3 vn ....



Linked lists

D.E ZEGOUR - ESI 5

Abstract Machine (AMLL )
A
L
L
O
C
A
T
E 
_
C
E
L
L
( 
P 
) 
: 
C
r
e
a
t
e 
a 
c
e
l
l 
a
n
d 
r
e
t
u
r
n 
i
t
s 
a
d
d
r
e
s
s 
i
n 
P.
F
R
E
E 
( 
P 
) 
: 
F
r
e
e 
t
h
e 
n
o
d
e 
o
f 
a
d
d
r
e
s
s 
P.
N
E
X
T 
( 
P 
) 
: 
A
c
c
e
s
s 
t
o 
t
h
e 
A
d
d
r
e
s
s 
f
i
e
l
d 
o
f 
t
h
e 
n
o
d
e 
r
e
f
e
r
e
n
c
e
d 
b
y 
P.
C
E
L
L
_
V
A
L
U
E 
( 
P 
) 
: 
A
c
c
e
s
s 
t
o 
t
h
e 
V
a
l
u
e 
f
i
e
l
d 
o
f 
t
h
e 
n
o
d
e 
r
e
f
e
r
e
n
c
e
d 
b
y 
P.
A
S
S
_
A
D
R 
( 
P, 
Q 
) 
:
A
s
s
i
g
n 
t
o 
t
h
e 
A
d
d
r
e
s
s 
f
i
e
l
d 
o
f 
t
h
e 
n
o
d
e 
r
e
f
e
r
e
n
c
e
d 
b
y 
P, 
t
h
e 
a
d
d
r
e
s
s 
Q.
A
S
S
_
V
A
L
( 
P, 
V
a
l 
) 
: 
A
s
s
i
g
n 
t
o 
t
h
e 
V
a
l
u
e 
f
i
e
l
d 
o
f 
t
h
e 
n
o
d
e 
r
e
f
e
r
e
n
c
e
d 
b
y 
P, 
t
h
e 
v
a
l
u
e 
V
a
l.

ALLOCATE _CELL( P ) : 
Create a cell and return its address in P.

FREE ( P ) : 
Free the node of address P.

NEXT ( P ) : 
Access to the Address field of the node referenced by P.

CELL_VALUE ( P ) : 
Access to the Value field of the node referenced by P.

ASS_ADR ( P, Q ) : 
Assign to the Address field of the node referenced by P, the address Q.

ASS_VAL( P, Val ) : 
Assign to the Value field of the node referenced by P, the value Val.



Linked lists

D.E ZEGOUR - ESI 6

Solution to introduction problem

1. A number is prime only if it is not divisible by the prime numbers that precede it.

We use the following two facts next:

2. All prime numbers are of the form 6m+1 or 6m-1.



Linked lists

D.E ZEGOUR - ESI 7

Solution to introduction problem

       READ ( N ) ;
       ALLOCATE_CELL ( P ) ;
       ASS_VAL ( P , 2 ) ;
       WRITE ( 2 , 3 ) ;
       Head := P ;
       ALLOCATE_CELL ( Q ) ;
       ASS_VAL ( Q , 3 ) ;
       WRITE ( 3 ) ;
       ASS_ADR ( Q , NULL ) ;
       ASS_ADR ( P , Q ) ;

2 3

Head QP



Linked lists

D.E ZEGOUR - ESI 8

Solution to introduction problem

       READ ( N ) ;
       ALLOCATE_CELL ( P ) ;
       ASS_VAL ( P , 2 ) ;
       WRITE ( 2 , 3 ) ;
       Head := P ;
       ALLOCATE_CELL ( Q ) ;
       ASS_VAL ( Q , 3 ) ;
       WRITE ( 3 ) ;
       ASS_ADR ( Q , NULL ) ;
       ASS_ADR ( P , Q ) ;

       M := 1 ;        Continue := TRUE ;       Aig := TRUE ;
       WHILE Continue :
           CALL Gen_Number ( M , Aig , Number ) ;
           Aig := NOT Aig ;
           IF Aig :
               M := M + 1
           ENDIF ;
           IF Number <= N :
               IF Prime ( Head , Number ) :
                   WRITE ( Number ) ;      ALLOCATE_CELL ( Q ) ;
                   ASS_VAL ( Q , Number ) ;     ASS_ADR ( Q , NULL ) ;
                   ASS_ADR ( P , Q ) ;
                   P := Q
               ENDIF
           ELSE
               Continue := FALSE
           ENDIF
       ENDWHILE ;

2 3

Head P

5

Q



Linked lists

D.E ZEGOUR - ESI 9

Solution to introduction problem

 Gen_nombre( M, Aig, Number )  
                          
If Aig : Number := 6M - 1
Else Numbre := 6M + 1 Endif 

Prime (L, N)

       P := L ;
       Found := FALSE ;
       WHILE ( P <> NULL ) AND NOT Found :
           IF Divisible ( Number , CELL_VALUE ( P ) ) :
               Found := TRUE
           ELSE
               P := NEXT ( P )
           ENDIF
       ENDWHILE ;
       Prime := NOT Found

Divisible (A, B) 

Q := A / B {Integer division }
Divisible := Q.B = A 



Linked lists

D.E ZEGOUR - ESI 10

Algorithms on linked lists

Just like with arrays, algorithms on LLs can be classified as follows:

1. Traversal: access by value, access by position

2. Updates: insertion, deletion

3. Algorithms involving multiple LLs: merging, interleaving, splitting, etc.

4. Sorting



Linked lists

D.E ZEGOUR - ESI 11

Special Linked Lists

Doubly linked list  (DLL)
It is an LL that can be traversed in both directions

AMDLL = AMLL - {ASS_ADR} + { ASS_R_ADR, ASS_L_ADR, PREVIOUS }

The abstract machine on LL is extended by the following operations:

PREVIOUS ( P ) : Access to the 'Left address' field of the node referenced by P.
ASS_R_ADR ( P, Q ) : Assign to the 'Right address' field of the node referenced by P, the address Q.
ASS_L_ADR ( P, Q ) : Assign to the 'Left address' field of the node referenced by P, the address Q.



Linked lists

D.E ZEGOUR - ESI 12

Special Linked Lists

Deleting the item pointed by  P in a doubly linked list L

IF P # NULL :
        IF PREVIOUS ( P ) # NULL :
               ASS_R_ADR ( PREVIOUS ( P ) , NEXT ( P ) )                
        ELSE
               L := Next (P)
        ENDIF
        IF NEXT ( P ) # NULL :
               ASS_L_ADR ( NEXT ( P ) , PREVIOUS ( P ) )
        ENDIF
        FREE ( P ) ;
FSI

P

P

P



Linked lists

D.E ZEGOUR - ESI 13

Special Linked Lists

Circular Linked List (CLL)

It is an LL in which the last element points to the first. It is defined by the address of any element

AMLLC = AMLL



Linked lists

D.E ZEGOUR - ESI 14

Special Linked Lists

Circular Doubly Linked List (CDLL)

It is a two-way CLL in which the last (first) element points to the first (last)

AMCDLL = AMDLL.



Linked lists

D.E ZEGOUR - ESI 15

Implementation : Dynamic (C)

  #include <stdio.h>
  #include <stdlib.h>

  /** -Implementation- **\: LIST Of INTEGERS**/
  /** Linked lists **/

  typedef int Typeelem_Li   ;
  typedef struct Cell_Li * Pointer_Li ;
  struct Cell_Li
    {
      Typeelem_Li  Val ;
      Pointer_Li Next ;
    } ;
  Pointer_Li Allocate_cell_Li (Pointer_Li *P)
    {
      *P = (struct Cell_Li *) malloc( sizeof( struct Cell_Li)) ;
      (*P)->Next = NULL;
    }
  void Ass_val_Li(Pointer_Li P, Typeelem_Li Val)
    {
      P->Val = Val ;
    }

  void Ass_adr_Li( Pointer_Li P,  Pointer_Li Q)
    {
      P->Next = Q ;
    }

  Pointer_Li Next_Li(  Pointer_Li P)
    { return( P->Next ) ;  }

  Typeelem_Li Cell_value_Li( Pointer_Li P)
    { return( P->Val) ; }
  void Free_Li ( Pointer_Li P)
    { free (P);}
  /** Variables of main program **/
  Pointer_Li L=NULL;

  int main(int argc, char *argv[])
    {    
      system("PAUSE");
      return 0;
}



Linked lists

D.E ZEGOUR - ESI 16

Implementation : Static (C)

The array is  a set of triples (Element, Next, Occupied)

y 6 V

d -1 V

b 5 V

a 2 V

x 0 V

 c 1 V

z -1 V

F

F

 a b c d

0

1
2

3

4

5
6

Max -1

 x y z

The 'Element' field 
holds the stored value.

The 'Next' field 
contains the address of 
the next cell. 

The 'Occupied' field 
indicates the 
availability of the cell. 
It is necessary for 
'Allocate' and 'Free' 
operations.

Static (or global)  Array 



Linked lists

D.E ZEGOUR - ESI 17

  #define Max 100
  #define True 1
  #define False 0
  #define Nil -1

  typedef int Bool;
  typedef int Anytype;
  struct Typelist
    {
     Anytype Element ;
      int Next;
      Bool Occupied;
   } ;
  struct Typelist List[ Max ];

Implementation : Static (C)

An initialization phase is mandatory before using this 
array. It consists of initializing the 'Occupied' field to 
false.

A linked list is defined by the index of its first element.

Linked lists can be represented in a single array



Linked lists

D.E ZEGOUR - ESI 18

  void Allocate ( int *I )
    {
      Bool Found;
      *I = 0;
      Found = False;
      while ( *I < Max && !Found)
        if ( List[*I].Occupied )
          *I++  ;
        else
          Found= True;
        if  ( !Found)  *I = -1;

    }
  void Free ( int I )
    {
      List[I].Occupied = False ;
    }
  Anytype Value ( int I )
    {
      return( List[I].Element );
    }  

Implementation : Static (C)

  int Next ( int I )
    {
      return ( List[I].Next ) ;
    } 
  void Ass_val ( int I, Anytype Val)
    {
      List[I].Element = Val;
    }

  void Ass_adr ( int I, int J)
    {
      List[I].Next = J;
    }
  int main(int argc, char *argv[])
    {  
      system("PAUSE");
      return 0;
    }



Linked lists

D.E ZEGOUR - ESI 19

  PROGRAM My_program;
  { -Implementation- : LIST Of INTEGERS}
  { Linked lists }
  TYPE
    Typeelem_LI = INTEGER;
    Pointer_LI = ^Cell_LI; { type of field 'Address' }
    Cell_LI = RECORD
        Val : Typeelem_LI;
        Next: Pointer_LI
    END;
 
 PROCEDURE Allocate_cell_LI ( VAR P : Pointer_LI ) ;
    BEGIN  NEW(P)  END;

  PROCEDURE Free_LI ( P : Pointer_LI ) ;
    BEGIN  DISPOSE(P)  END;

  PROCEDURE Ass_val_LI(P : Pointer_LI; Val : Typeelem_LI );
    BEGIN       
      P^.Val := Val  
    END;

Implementation : Dynamic (Pascal)

   FUNCTION Cell_value_LI (P : Pointer_LI) : Typeelem_LI;
    BEGIN   Cell_value_LI := P^.Val  END;

  FUNCTION Next_LI( P : Pointer_LI) : Pointer_LI;
    BEGIN  Next_LI := P^.Next END;

  PROCEDURE Ass_adr_LI( P, Q : Pointer_LI ) ;
    BEGIN P^.Next:= Q    END;
   
  { Declaration part of variables }
  VAR
    L : Pointer_LI;

   { Body of main program }
   BEGIN
     READLN;
   END.


