Linked Lists

D.E ZEGOUR
Ecole Supérieure d'Informatique
ESI

Linked lists

Introduction example

Find all prime numbers from
1 to n and store them in
memory.

n : data to read
Problem : choice of the data structure

If Array : not possible to define its size

If Array : not possible to precisely define
its size even if n is known

4

Space allocation must be dynamic

Linked lists

Concept of Static and Dynamic Allocation

Static allocation

Space is entirely allocated at the
beginning of a process

In technical terms, we describe this as
the space being known at compile time

It ‘s therefore an array

Dynamic allocation

Space is allocated as the program executes

To perform this type of allocation, the user must have access
to both space allocation and space deallocation operations.

If the programming language provides these capabilities,
they can be used directly

Otherwise, simulate them, meaning managing
the space manually within a large array.

Linked lists

Definition

A linked list (LL) is a collection of dynamically vl

allocated nodes (or cells) linked together
Head

An item of an LL is always a structure with two fields :
- Value field : holding the information
- Address field : giving the address of the next cell

Each node is associated with an address

This introduces in the algorithmic language a new variable
type: the POINTER type

v2 v3|1T—=> = — | vnp

An LL is characterized by the address
of its first element.

Nil represents an address that
does not point to any node

Linked lists

Abstract Machine (AMLL)

ALLOCATE CELL(P):

Create a cell and return its address in P.
FREE (P):

Free the node of address P.
NEXT (P):

Access to the Address field of the node referenced by P.
CELL_VALUE (P):

Access to the Value field of the node referenced by P.
ASS_ADR(P,Q):

Assign to the Address field of the node referenced by P, the address Q.
ASS_VAL(P, Val) :

Assign to the Value field of the node referenced by P, the value Val.

D.E ZEGOUR - ESI

Linked lists

Solution to introduction problem

We use the following two facts next:

1. A number is prime only if it is not divisible by the prime numbers that precede it.

2. All prime numbers are of the form 6m+1 or 6m-1.

P Head& Q l

Linked lists 2

Solution to introduction problem

READ (N);
ALLOCATE_CELL(P);
ASS VAL(P,2);
WRITE(2,3);

Head :=P;
ALLOCATE_CELL(Q);
ASS VAL(Q,3);
WRITE (3) ;

ASS _ADR (Q, NULL);
ASS ADR(P,Q);

Linked lists

Solution to introduction problem

READ (N);
ALLOCATE_CELL(P);
ASS VAL(P,2);
WRITE(2,3);

Head :=P;
ALLOCATE_CELL(Q);
ASS VAL(Q,3);
WRITE (3) ;

ASS _ADR (Q, NULL);
ASS ADR(P,Q);

Head| P | Q|

M:==1; Continue := TRUE ; Aig := TRUE;
WHILE Continue :
CALL Gen_Number (M, Aig , Number) ;
Aig := NOT Aig ;
IF Aig :
M:=M+1
ENDIF ;
IF Number <= N :
IF Prime (Head , Number) :
WRITE (Number); ALLOCATE_CELL(Q);
ASS VAL (Q, Number); ASS ADR(Q, NULL);
ASS ADR(P,Q);
P:=Q
ENDIF
ELSE
Continue := FALSE
ENDIF
ENDWHILE ;

Linked lists

Solution to introduction problem

Gen_nombre(M, Aig, Number) Prime (L, N)
If Aig : Number :=6M -1 P:=L;
Else Numbre := 6M + 1 Endif Found := FALSE ;

WHILE (P <> NULL) AND NOT Found :
IF Divisible (Number , CELL_VALUE (P)):

Found := TRUE
Divisible (A, B) ELSE

P:= NEXT(P)
Q := A/ B {Integer division } ENDIF
Divisible :=Q.B = A ENDWHILE ;

Prime := NOT Found

Linked lists

Algorithms on linked lists

Just like with arrays, algorithms on LLs can be classified as follows:

1. Traversal: access by value, access by position

2. Updates: insertion, deletion

3. Algorithms involving multiple LLs: merging, interleaving, splitting, etc.

4. Sorting

Linked lists

Special Linked Lists

Doubly linked list (DLL)
It is an LL that can be traversed in both directions

AMDLL = AMLL - {ASS_ADR} + { ASS_R_ADR, ASS_L_ADR, PREVIOUS }

The abstract machine on LL is extended by the following operations:
PREVIOUS (P) : Access to the 'Left address' field of the node referenced by P.

ASS R _ADR (P, Q) : Assign to the 'Right address' field of the node referenced by P, the address Q.
ASS L ADR (P, Q) : Assign to the 'Left address' field of the node referenced by P, the address Q.

D.E ZEGOUR - ESI

11

Linked lists

Special Linked Lists

Deleting the item pointed by P in a doubly linked list L

IF P # NULL:
IF PREVIOUS (P) # NULL :
ASS_R_ADR (PREVIOUS (P), NEXT (P))
ELSE
L := Next (P)
ENDIF
IF NEXT (P) # NULL :
ASS_L_ADR (NEXT (P), PREVIOUS (P))
ENDIF
FREE (P);
FSI

Linked lists

Special Linked Lists

Circular Linked List (CLL)
It is an LL in which the last element points to the first. It is defined by the address of any element

AMLLC = AMLL

Linked lists

Special Linked Lists

Circular Doubly Linked List (CDLL)
It is a two-way CLL in which the last (first) element points to the first (last)

AMCDLL = AMDLL.

Linked lists

Implementation : Dynamic (C)

#include <stdio.h>
#include <stdlib.h>

/** -Implementation- **\: LIST Of INTEGERS**/
/** Linked lists **/

typedef int Typeelem_Li ;
typedef struct Cell _Li * Pointer_Li;
struct Cell_Li
{
Typeelem_Li Val;
Pointer_Li Next ;
Y
Pointer_Li Allocate_cell_Li (Pointer_Li *P)
{
*P = (struct Cell_Li *) malloc(sizeof(struct Cell_Li)) ;
(*P)->Next = NULL;

}
void Ass_val_Li(Pointer_Li P, Typeelem_Li Val)
{
P->Val = Val ;

}

void Ass_adr_Li(Pointer_Li P, Pointer_Li Q)
{
P->Next = Q;
}

Pointer_Li Next_Li(Pointer_Li P)
{ return(P->Next) ; }

Typeelem_Li Cell value_Li(Pointer_Li P)
{ return(P->Val) ; }
void Free_Li (Pointer_Li P)
{free (P);}
/** Variables of main program **/
Pointer_Li L=NULL;

int main(int argc, char *argv[])

{
system("PAUSE");

return O;

Linked lists

Implementation : Static (C)

The array is a set of triples (Element, Next, Occupied)

The 'Element' field
holds the stored value.

The 'Next' field
contains the address of
the next cell.

The 'Occupied' field
indicates the
availability of the cell.
It 1s necessary for
'Allocate' and 'Free'
operations.

Static (or global) Array

o 0 A W N L O

Max -1

O | o <

]
=

mn o< << < <K <K <

Linked lists

Implementation : Static (C)

Linked lists can be represented in a single array

An 1nitialization phase 1s mandatory before using this
array. It consists of initializing the 'Occupied' field to
false.

A linked list 1s defined by the index of its first element.

#define Max 100
#define True 1
#define False O
#define Nil -1

typedef int Bool;
typedef int Anytype;
struct Typelist
{
Anytype Element ;
int Next;
Bool Occupied;
Y
struct Typelist List[Max];

Linked lists

Implementation : Static (C)

void Allocate (int *I)
{
Bool Found;
*=0;
Found = False;
while (*I < Max && !Found)
if (List[*I].Occupied)
*l++ ;
else
Found= True;
if (!Found) *I=-1;

}

void Free (int 1)

{
List[I].Occupied = False ;

}
Anytype Value (int)

{

return(List[l].Element);

}

int Next (int1)

{
return (List[I].Next) ;

}
void Ass_val (int |, Anytype Val)

{
List[l].Element = Val;

}

void Ass_adr (int |, intJ)
{
List[l].Next = J;
}
int main(int argc, char *argv[])
{
system("PAUSE");
return O;

}

Linked lists

Implementation : Dynamic (Pascal)

PROGRAM My _program; FUNCTION Cell_value_LI (P : Pointer_LI) : Typeelem_LI;
{ -Implementation- : LIST Of INTEGERS} BEGIN Cell value LI :=P2Val END;

{ Linked lists }
TYPE
Typeelem LI = INTEGER;
Pointer_ LI = ACell_LI; { type of field 'Address' }
Cell_LI = RECORD
Val : Typeelem_LI;
Next: Pointer LI
END;

FUNCTION Next_LI(P : Pointer_LI) : Pointer_LlI;
BEGIN Next LI := PA.Next END;

PROCEDURE Ass_adr_LI(P, Q : Pointer_LI);
BEGIN PA.Next:=Q END;

{ Declaration part of variables }
VAR

PROCEDURE Allocate_cell LI (VAR P : Pointer_LI); L : Pointer_LI;

BEGIN NEW(P) END;
{ Body of main program }

PROCEDURE Free LI (P : Pointer LI); BEGIN
BEGIN DISPOSE(P) END; READLN;
END.
PROCEDURE Ass_val_LI(P : Pointer_LI; Val : Typeelem LI);
BEGIN
PA.Val := Val

END;

