Khawarizm

D.E ZEGOUR
Ecole Supérieure d'Informatique
ESI

Khawarizm

CONTENTS

Overview
Use
Z Language

Documentation

Khawarizm

OVERVIEW

KHAWARIZM is an environment for [€arnin g and dee pen N g the main data and file

structures.

KHAWARIZM offers the possibility to write algorithms in an algorithmic language (Z-

language), to indent them, to FUN or simulate them and to cOnvert them

automatically to the PASCAL and C programming languages.

Khawarizm

OVERVIEW

use of Z language

Writing algorithms on abstract machines simulating the main data
structures.

Aims:

- Experimenting on the main data structures, regardless of their implementation, by
developing algorithms on arrays, records, linked lists, doubly linked lists, queues,
stacks, binary search trees, m-ary search trees.

- Creating and managing complex data structures including linked list of queues,
linked list of stacks, tree of linked lists, linked list of stacks of arrays, etc.

Khawarizm

USE

Familiarization with an arbitrary algorithmic language
Learn the algorithmic language used.
Use the help.

Editing the algorithm
Write an algorithm or correct an existing algorithm.

Syntax check

Repeat as long as there are errors
. Run the Indent module.
. Correct the errors

At this point, your algorithm is well written and has been indented for you. (You can
change the presentation modes of your algorithm (see "Options" in the menu)

D.E ZEGOUR - ESI

Khawarizm

USE

Running

Start the execution of your algorithm

The windows then show

- the data read by your algorithm (Data button)

- the writings emitted by your algorithm (Results Button)

Your algorithm gives either the expected results or not. In this last case, launch the
simulation to try to determine the logic errors.

Khawarizm
USE

Simulation

Run the simulation of your algorithm.
This is an execution with a trace.

The windows show

- the data read by your algorithm (Data button)

- the writings issued by your algorithm (Results Button)

- all the changes made on the objects used (Simulation Button)

You thus have the complete trace of your algorithm that you can print and analyze to
detect errors.

If you want to see more closely the different steps of your algorithm, ask for a trace.

Khawarizm
USE

Trace
Request the simulation with trace again.

You can then follow step by step the evolution of your algorithm, exit the current
loop or even the current module.

In order to avoid having a complete trace which can be long, it is possible to limit the
length of the loops used in your algorithm.

You can change the simulation modes (see "Options" in the menu).

Khawarizm
USE

Translation to a programming language

Once your algorithm is "running", it is possible to translate it automatically into
PASCAL or C. Just click on the "To Pascal" or "To C" button.

Two windows organized as "Tiles" are then shown. One contains your algorithm and
the other the result of the translation.

You can consult the help concerning the transition to PASCAL or C.
In this help, you will find
- The Z to PASCAL and Z to C equivalents.

- All implementations of Z machines.

Khawarizm's task stops here.

Khawarizm

USE

PASCAL or C programming

Use the PASCAL or C compiler to finalize your program. In particular, you can add all
the procedures of data entry and restitution of the results.

Khawarizm
Z LANGUAGE

Overview

> A Z algorithm is a set of modules. The first one is the main module and the others
are either actions (ACTION) or functions (FUNCTION).

> The Z language accepts recursion.
> Static objects are declared in the main module.

> The communication between modules is made via parameters and static variables.

Khawarizm

Z LANGUAGE

Overview

> The language allows:
- Any type of parameters : scalars, structures, linked lists , queues, stacks, arrays,
trees and also complex types.

- The dynamic allocation of arrays and structures
- The global assignment of any type

> Four standard types (scalars) are allowed : INTEGER, BOOLEAN, CHAR, STRING.
> Some usual functions exist : MOD, MAX, MIN, ...

> The langage is the set of abstract algorithms written by using abstract machines.

Khawarizm
Z LANGUAGE

Overview

> So, we consider abstract machines on structures, arrays of any dimension, queues,
stacks, binary and M-ary search trees, linked lists and doubly linked lists.

> We also consider an abstract machine on the files allowing their use and the
construction of simple structures of files as well as the most complex structures.

> The language allows compound types such as STACK OF QUEUE OF LISTS OFOF
which the last one quoted is of scalar type or simple structure.

Khawarizm

Z LANGUAGE

Overview

> The language has high-level operations to build lists, trees, queues, etc. from a set
of values (expressions) or structures.

> the language offers two very useful functions to randomly generate strings
(RANDSTRING) and integers (RANDNUMBER).

> The language allows reading and writing scalars, n-dimensional arrays of scalars
and simple or complex structures.

Khawarizm

Z LANGUAGE

Structure of a Z algorithm

LET
{ Local and statitc objects }
{ announcement of the modules}
BEGIN
{ Statements }
END
Module 1

Module n

Each module can be either a function or an action.

Khawarizm
Z LANGUAGE

Definition of an action

ACTION Name (P1, P2, ..., Pn)
{ Local objects and parameters }
BEGIN
{ Statements }
END

Calling an action is made by the operation
CALL followed by the name of the action
and its parameters.

Parameters are not protected by the
action.

Definition of a function

FUNCTION Name (P1, P2, ...,Pn) : Type
{ Local objects and parameters }
BEGIN
{ Statements }
END
Type can be any.

Functions are used in expressions.

Parameters are not protected by the
function.

Khawarizm

Z LANGUAGE

Example of a Z algorithm

{Is a linked list included in another ? }
LET

L1, L2 : LISTS;

Search , All : FUNCTION (BOOLEAN) ;
BEGIN
CREATE_LIST(L1,[2,5,9,8,3,6]);

CREATE_LIST(L2,[12,5,19,8,3,6,2,9]);

WRITE (All (L1,L2))
END

{ Search for a value in a linked list }
FUNCTION Search (L, Val) : BOOLEAN
LET

L: LIST;

Val : INTEGER ;

BEGIN

IF L=NULL

Search := FALSE

ELSE

IF CELL_VALUE (L) = Val

Search := TRUE

ELSE

Search :=Search (NEXT (L), Val)
ENDIF

ENDIF

END

{Is L1 included in L2? }

FUNCTION All (L1, L2) : BOOLEAN
LET

L1, L2 : LISTS;

BEGIN

[F L1 =NULL

All :== TRUE

ELSE

IF NOT Search (L2, CELL_VALUE (L1))
All := FALSE

ELSE

All := All (NEXT(L1),L2)

ENDIF

ENDIF

END

D.E ZEGOUR - ESI

17

Khawarizm

Z LANGUAGE

Objects

Objects can be scalars : INTEGER, BOOLEAN, CHAR, STRING.

Objects can be abstract machines :

QUEUE, STACK,

STRUCTURE, ARRAY,

LIST, BILIST(Doubly linked lists),

BST(Binary search trees), MST(M-ary search trees),
FILE.

Objects can be complexes, i.e, a combination of abstract machines.

D.E ZEGOUR - ESI

18

Khawarizm
Z LANGUAGE

Objects (Examples)

Scalars :
A, B, C: BOOLEANS ; Ch : STRING ;

Abstract machines :
A : BST;
L1, L2 : LISTS;
A : STRUCTURE(STRING, INTEGER) ;
F : FILE OF (INTEGER, ARRAY(10)) HEADER INTEGER BUFFER BUF1, BUF2

Complex structures :
V1 :ARRAY(10, 60) OF (CHAR, INTEGER) ;
Y : LISTE OF STACKS OF ARRAYS10)

D.E ZEGOUR - ESI

19

Khawarizm
Z LANGUAGE

Z Expressions

As in the programming languages.

Arithmetical expressions :+,-,/, *

Logical expressions : AND, OR, NOT
Expressions on strings : +

Relational expressions : <, <=, >, >=, =, <> (or #)

Logical constants : TRUE, FALSE
Pointer constant : NULL

D.E ZEGOUR - ESI

Examples

B+C/F

NOT Found

(X #5) AND NOT Found
F(X)<>5

P = Null

20

Khawarizm
Z LANGUAGE

Statements

V denotes a variable, E an expression and Idf an identifier of an action or a function
[] denotes an optional part, { } a set.

Assignment: V:=E
Reading: READ(V1, V2,)
Writing: WRITE(EZL, E2,)
Calling: CALLIdf[(EZL, E2,...)]
Conditionnal : IFE[:] {Statements} [ELSE { Statements}] ENDIF
While Loop: WHE][:]
{ Statements}

EWH

For Loop : FORV :=E1, E2,E3 // E3 denotes the step

{ Statements}
ENDFOR

Khawarizm

Z LANGUAGE

Abstract Machines

Linked lists : ALLOCATE_CELL, FREE CELL_VALUE, NEXT, ASS_ADR, ASS_VAL

Doubly linked lists : ALLOCATE_CELL, FREE, CELL_VALUE, NEXT, ASS_VAL, PREVIOUS,
ASS_L_ADR, ASS_R_ADR

Stacks : CREATESTACK, PUSH, POP, EMPTY_STACK
Queues : CREATEQUEUE, ENQUEUE, DEQUEUE, EMPTY_QUEUE

Binary search trees : ALLOCATE_NODE, LC, RC, PARENT, FREE_NODE, ASS _LC, ASS_RC,
ASS PARENT, NODE_VALUE, ASS NODE_VAL

D.E ZEGOUR - ESI

22

Khawarizm

Z LANGUAGE

Abstract Machines

M-ary search trees : ALLOCATE_ NODE, CHILD, FREE_ NODE, ASS_CHILD, NODE_VALUE_MST,
ASS_NODE_VAL_MST, DEGREE, ASS_DEGREE, PARENT, ASS_PARENT

Arrays : ELEMENT, ASS ELEMENT.
ALLOC_ARRAY, FREE_ARRAY (If dynamic array)

Structures : Struct, ASS_struct
ALLOC_STRUCT, FREE_STRUCT(If dynamic structure)

Files : OPEN, CLOSE, HEADER, ASS_HEADER,HEADSEQ,READDIR,WRITESEQ, WRITEDIR, ADD,
ALLOC-BLOCK, ENDFILE

D.E ZEGOUR - ESI

23

Khawarizm

Z LANGUAGE

High level operations

CREATE_LIST (L, [Exp1, Exp2,])
CREATE_BILIST (LB, [Exp1, Exp2,])
CREATE_BST (A, [Expl, Exp2,])
CREATE_MST (M, [Exp1, Exp2,])
CREATE_QUEUE (F, [Expl, Exp2,])
CREATE_STACK (P, [Exp1, Exp2,])
INIT_STRUCT(S, [Exp1, Exp2,])
INIT_ARRAY(T, [Exp1, Exp2,])

Examples

CREATE-LIST (L, [12, 23, 67, |, I14+]])

creates the linked list L with values with the values in square brackets in the order
shown.

D.E ZEGOUR - ESI 24

Khawarizm

DOCUMENTATION

Download :

Khawarizm [I* afFe (win 64) : http://zegour.esi.c

Khawarizm

DOCUMENTATION

Documentation Integrated into Khawarizm
Introduction (TXT)
Presentation (TXT)
Use (TXT)
Exposition about Khawarizm (HTML)

Z language description (HTML)

