
Hashing
Collision Resolution

D.E ZEGOUR
École Supérieure d'Informatique

ESI

two ways to organize data that arrive
in any order into a table.

Introduction

D.E ZEGOUR - ESI 2

Keep the array ordered

Fast search (Binary search: O(Log(n))

Insertion with shifting (O(n))

Keep the array non ordered

Insertion at the end (O(1))

Slow search (Linear search: O(n))

To quickly search (O(Log(n)), one would need to sort slowly (O(n)).
To sort quickly (O(1)), one would need to search slowly (O(n)).

Hashing

A third possibility for organizing data in
an array

D.E ZEGOUR - ESI 3

Data K is stored at a location calculated by a function h.

Fast search and insertion (O(1)).

Problem: Determination of a bijective function

Bijection: assigns a new location in the array to each data.

Introduction

0

1

2

M-1

Data K
h(K) K

Hashing

D.E ZEGOUR - ESI 4

Not easy to discover a bijective function

There are 4131 ≈ 1050 possible
functions mapping a set of 31
elements to a set of 41
elements.

Introduction

 Out of these, only 41! / 10! = 1043
functions have distinct values for
each argument. (bijective
functions)

 Approximately one function in 10
million meets this criterion.
 (1043 / 1050)

1
2
3

31

...

1
2
3

...

41Data

Array

Function

Hashing

D.E ZEGOUR - ESI 5

Not easy to discover a bijective function

Birthday Paradox:

<< If there are 23 or more people
present in a room, the chances are
high that at least two of them share
the same day and month of birth.>

Introduction

Probability = 0.4927

Functions from a set of 23 elements
to a set of 365 elements

Calculate ...

Hashing

D.E ZEGOUR - ESI 6

This class of algorithms is referred to as Hashing or the scatter arrangement
technique.

There will always be distinct data K1 and K2 for which f(K1) = f(K2).
This scenario is known as a collision.

In conclusion, to use a hashing technique, we must define the following:
- A hash function
- A collision resolution method.

Introduction

Hashing

Terminology

D.E ZEGOUR - ESI 7

Data that share the same image under the hash function are referred to as synonyms.
 K1, K2, ..., Kn are synonyms if h(K1) = h(K2) = ... = h(Kn)

The primary address of a data is determined by the function f(data).

Any data not located at its primary address is referred to as overflow.
It is also described as being stored at a secondary address.

Hashing

Hashing Functions

D.E ZEGOUR - ESI 8

The goal is to discover a function f such that:
0 ≤ f(K) < M
to minimize the occurrence of collisions
(K is the data to hash and M is the table size)

Ideally, we aim for f to be bijective.
The worst-case scenario arises when all data are hashed to a single address.

An acceptable solution is one where some data share the
same address (f is surjective).

Hashing

Example of Hashing function

D.E ZEGOUR - ESI 9

Transformation of the word ALGORITHM

a) 65 76 71 79 82 73 84 72 77 32
b)
6576 + 7179 = 13,755 Mod 20000 = 13,755
13755 + 8273 = 22,028 Mod 20000 = 2,028
2028 + 8472 = 10,500 Mod 20000 = 10,500
10500 + 7732 = 18,232 Mod 20000 = 18,232

c) a= 18,232 mod 101 = 52.

1. Represent the data in numerical form.

2. Concatenate and sum (Folk and Add).

3. Divide the result by a prime number
and use the remainder as the address.

Modulo 20,000 is employed to prevent any overflow.

Hashing

D.E ZEGOUR - ESI 10

Modulo
h(K)= K mod M

M : table size
Good choice : M prime number

Example:
h(453) = 53

table size : 101

Middle square

Square the data and extract the
middle numbers.

Example:

(453)2 = 205209
h(453) = 52

table size : 100

favorable results when there
are no zeros in the squared
number

Radix
The data is converted into a specific
number base, and we calculate the
remainder of the division of the
transformed data by the size of the
table.

Example :

453= (382)11 (en base 11)
382 Mod 100 = 85
h(453) = 85

table size : 100

Hashing
Examples of Hashing functions

Collision Resolution

D.E ZEGOUR - ESI 11

There are various methods for handling collisions

The most classical methods:

1. Linear probing

2. Double hashing

3. Internal chaining

4. External chaining or separated chaining

Hashing function used : Modulo

Hashing

D.E ZEGOUR - ESI 12

If a collision occurs in cell I of the array T[0..M-1], we insert the data into the first available
cell within the cyclic sequence:

I-1, ..., 0, M-1, M-2, ..., I+1

Linear probing

In essence, we perform a linear search for an available cell within the mentioned sequence,
hence the name of the method.

Hashing

Linear probing

D.E ZEGOUR - ESI 13

 d

 e

 a

 c

Inserting the following data along with their transformations (in
parentheses): a(3), b(2), c(3), d(2), e(1) into a table T with 6
elements

- Inserting a(3)
- Inserting b(2)
- Inserting c (3)
- Inserting d (2)
- Inserting e(1)

0

1

2

3

4

5

 b

Hashing

D.E ZEGOUR - ESI 14

L1. [Hash]
i := h(K) { 0 ≤ i < M }

L2. [Compare]
IF Data(i) = K, the algorithm terminates
successfully.
Otherwise, IF T(i) is empty, go to L4.

L3. [Advance to next]
i := i - 1
IF i < 0: i := i + M
GO TO L2.

L4. [Insert] {search is unsuccessful}
IF N = M - 1
 The algorithm ends with overflow
ELSE
 N := N + 1
 Mark T(i) as occupied
 Data(i) := K

A static variable is used : N
Number of data inserted.

Algorithm :
- Search for data K in the table
T[0..M-1] of M elements.
- If K is not found and the table is
not fulll, data k is inserted

Table is considered filled when N = M - 1,
not when N = M

Hashing
Linear probing

D.E ZEGOUR - ESI 15

This method is quite similar to the previous one

In other words, when a collision occurs at cell I, a step p is calculated using another hash
function, and the cyclic sequence to be consulted would be I-p, I-2p, and so on.

Two hashing functions are used h(K) et h'(K). Hence the name of the method.

The choice of M holds significant importance, as an incorrect choice can result in the
incomplete coverage of the set of possible addresses

We demonstrate that when M is a prime number, and the hash function is random, it
provides full coverage of the entire set of addresses.

Double hashing

Hashing

D.E ZEGOUR - ESI 16

 c

 e

 a

 d

Inserting a(3), b(2), c(3), d(2), e(1)
with h'(c) = 3 ; h'(d) = 1 ; h'(e) = 3 (h' is the second hashing
function) into a table T of 6 elements

- Inserting a(3)
- Inserting b(2)
- Inserting c (3)
- Inserting d (2)
- Inserting e(1)

0

1

2

3

4

5

 b

Hashing
Double hashing

D.E ZEGOUR - ESI 17

D1. [First hashing]
i := h(K)

D2. [First test]
IF T(i) is empty THEN GOTO D6.
IF Data(i) = K, the algorithm ends successfully.

D3. [Second hashing]
c := h'(K)

D4. [Advance to next]
i := i - c ; IF i < 0 THEN i := i + M

D5. [Compare]
IF T(i) is empty THEN GOTO D6.
IF Data(i) = K, the algorithm ends successfully.
OTHERWISE GOTO D4

D6. [Insert]
IF N = M - 1 THEN "overflow".
OTHERWISE
 N := N + 1
 Make T(i) occupied
 Data(i) := K

Algorithm :
- Search for data K in the table
T[0..M-1] of M elements.
- If K is not found and the table is
not fulll, data k is inserted

Hashing
Double hashing

A static variable is used : N
Number of data inserted.

Table T is considered filled when N = M - 1,
not when N = M

Internal Chaining

D.E ZEGOUR - ESI 18

Synonyms are organized into a linked list represented within the table. This method is aptly named.

When a collision occurs at cell K, we navigate through the linked list that starts at K

If the data is not found, search for an empty location in the table. This location will be added to the linked list.

Strategy : search for an empty position from the end

Importante Remark :
A linked list contains groups of synonyms.

Hashing

D.E ZEGOUR - ESI 19

Inserting a(3), b(2), c(3), d(2), e(1), f(6) into
a table T of 6 elements

- Inserting a(3)
- Inserting b(2)

0

1

2

3

4

5

 b .

 a .

6

R

Hashing
Internal Chaining

D.E ZEGOUR - ESI 20

Inserting a(3), b(2), c(3), d(2), e(1), f(6)
into a table T of 6 elements

- Inserting a(3)
- Inserting b(2)
- Inserting c (3)

0

1

2

3

4

5

 b .

 a 6

6 c . R

Hashing
Internal Chaining

D.E ZEGOUR - ESI 21

Inserting a(3), b(2), c(3), d(2), e(1), f(6) into
a table T of 6 elements

- Inserting a(3)
- Inserting b(2)
- Inserting c (3)
- Inserting d (2)
- Inserting e(1)

0

1

2

3

4

5

 b 5

 a 6

 d .

 e .

6 c .

R

Hashing
Internal Chaining

D.E ZEGOUR - ESI 22

Inserting a(3), b(2), c(3), d(2), e(1), f(6)
into a table T of 6 éléments

- Inserting a(3)
- Inserting b(2)
- Inserting c (3)
- Inserting d (2)
- Inserting e(1)
- Inserting f(6)

0

1

2

3

4

5

 b 5

 a 6

 f .

 d .

 e .

6 c 4

R

e

1

a c f

3 6 4

b d

2 5

List 1 List 2 List 3

Hashing
Internal Chaining

D.E ZEGOUR - ESI 23

Algorithm :
- Search for data K in the table T[0..M] of M
elements.
- If K is not found and the table is not fulll,
data k is inserted

Element = 2 fields : Data and Link

An auxiliary variable R is utilized to aid in
identifying empty spaces. When the table is
empty, R equals M

After several insertions, we have : T(j)
occupied for all j such that R ≤ j ≤ M.

By convention T(0) is not used (always empty)

0

1

2

M

R

....

Hashing
Internal Chaining

D.E ZEGOUR - ESI 24

C1. [Hash]
i := h(K) + 1 { so 1 ≤ i ≤ M }
C2. [Does a list exist?]
IF T(i) is empty THEN GOTO C6
{ otherwise T(i) is occupied; then we consult the list of occupied
chains }
C3. [Compare]
IF K = DATA(i), the algorithm ends successfully.
C4. [Advance to next]
IF LINK(i) <> 0 THEN
 i := LINK(i) ; GOTO C3
C5. [Find an empty cell]
{ The search is unsuccessful, and we want to find an empty
position in the table }
Decrement R one or more times until T(R) is empty.
IF R = 0 THEN the algorithm terminates with overflow.
Otherwise, do:
 LINK(i) := R ; i := R

C6. [Insert the new data]
Make T(i) Occupied with:
DATA(i) := K
LINK(i) := 0

Hashing
Internal Chaining

Algorithm :
- Search for data K in the table T[0..M] of M
elements.
- If K is not found and the table is not fulll,
data k is inserted

Element = 2 fields : Data and Link

An auxiliary variable R is utilized to aid in
identifying empty spaces. When the table is
empty, R equals M

After several insertions, we have : T(j)
occupied for all j such that R ≤ j ≤ M.

By convention T(0) is not used (always empty

D.E ZEGOUR - ESI 25

Synonyms are stored in a separate linked list, which is why this method is named as such.

A linked list holds only one group of Synonyms.

When a collision occurs at position i (i = h(k)) in the array T[0..M-1], we traverse the list
starting at h(k). If the data is not found, we insert the data into the list (at the beginning or
at the end).

It is possible to store more elements than the size of the array.

Separate Chaining

Hashing

D.E ZEGOUR - ESI 26

Inserting a(3), b(2), c(3), d(2), e(1) into a table T of
6 elements

- Inserting a(3)
- Inserting b(2)
- Inserting c(3)
- Inserting d 2)
- Inserting e(1)

0

1

2

3

4

5

 b .

 a .

 d

 c .

 e .
 .

 .

 .

 .

 .

 .

Hashing
Separate Chaining

D.E ZEGOUR - ESI 27

S1. [Hash]
i := h(K)

S2. [Is there a list?]
IF T(i) is empty THEN GOTO S5
{ in other cases, T(i) is occupied, and we then consult the list
of occupied chains }
P := T(i)

S3. [Compare]
IF K = DATA(p) THEN
 the algorithm ends successfully.

S4. [Advance to next]
IF LINK(p) <> Nil THEN
 P := LINK(P)
 GOTO S3

S5. [Insert new data]
Allocate a cell, denoted as Q.
DATA(Q) := K
LINK(Q) := T(i)
T(i) := Q

Algorithm:
- Search for a data K in the table T[1..M]. If
K is not found in the corresponding linked
list, the data is inserted.

- An element T(i) holds the list of
synonyms.

- Initially, T(i) := Nil
for all i in the interval [0..M-1].

Hashing
Separate Chaining

D.E ZEGOUR - ESI 28

Curves representing the average number of tests for
data search compared to the array loading factor .

(Loading factor = N/M, where N is the number of
elements present in the array, and M is the size of
the array)

- L denotes linear probing,
- D denotes double hashing,
- C denotes internal chaining, and
- S denotes separate chainin

Comparison between the Different Method

Hashing

Comparison between the Different Method

D.E ZEGOUR - ESI 29

 S > C > D > L

Chaining methods appear to be the most efficient

For a 70-80% loading factor --> O(1).

Hashing

Synthesis

D.E ZEGOUR - ESI 30

Generalisation: More than one data per table cell.

Usage
- Data insertion with load factor
control (setting a threshold).
- Good compromise: loading from
70 to 80%.

Advantage : Very fast access
to the l'information (O(1))

Drawbacks:
- Lack of order
- Limitation to static data

Application : dictionnary

Re hashing
- In case of table overload
(Size increases to 2M).
- In case of table underload
(Size decreases to M/2).

Hashing

