
Hashing
Deletion algorithms

D.E ZEGOUR
École Supérieure d'Informatique

ESI

Linear probing

D.E ZEGOUR - ESI 2

Let i be the element to delete (d).

Primary address of d : any possible address

h(d) = i
h(d) < i
h(d) > i

i dj

1. Make T(i) empty.
 Let j := i.

2. i := i - 1; If i < 0 : i := i + M

3. If T(i) is empty, the algorithm ends.
Otherwise, let r := h(T(i)).

i T[i]
j

i T[i]

Hashing / Deletion algorithms

Linear probing

D.E ZEGOUR - ESI 3

1. Make T(i) empty.
 Let j := i.

2. i := i - 1; If i < 0 : i := i + M

3. If T(i) is empty, the algorithm ends.
Otherwise, let r := h(T(i)).

4. CASE i < j
If r < i or r ≥ j:
 Move the element, i.e., T(j) := T(i)
 Go to 2
Otherwise, Go to 1

i

j

r < i

r >= j

Hashing / Deletion algorithms

Linear probing

D.E ZEGOUR - ESI 4

1. Make T(i) empty.
 Let j := i.

2. i := i - 1; If i < 0 : i := i + M

3. If T(i) is empty, the algorithm ends.
Otherwise, let r := h(T(i)).

4. CAS i > j
 If j ≤ r < i:
 Move the element, i.e., T(j) := T(i)
 Go to 2
 Otherwise, Go to 1

j

i

j <= r < i

Hashing / Deletion algorithms

D.E ZEGOUR - ESI 5

 d

 e

 a

 c

Deleting data e
Primary addresses : a(3), b(2), c(3), d(2), e(1)

Previous cell (T(4)) is empty : the algorithm
ends

0

1

2

3

4

5

 b

Linear probing

Make T(5) empty

Hashing / Deletion algorithms

D.E ZEGOUR - ESI 6

Deleting data a
Primary addresses : a(3), b(2), c(3), d(2), e(1)

- Make cell 3 empty.
- Since cell 2 is not empty, the algorithm
continues.
- As b is in its primary address (h(b) = 2), it will
not be moved, and the algorithm continues.

- The primary address of c is 3; c will be moved
to position 3. The algorithm continues since the
cell before c is not empty.

d will be moved to position 1.

e will be moved to position 0.

 d

 e

 a

 c

0

1

2

3

4

5

 b

Linear probing

 d

 e

 c

0

1

2

3

4

5

 b

 e

 c

 d

0

1

2

3

4

5

 b

 e

 c

 d

0

1

2

3

4

5

 b

Hashing / Deletion algorithms

Double hashing

D.E ZEGOUR - ESI 7

One cannot find an algorithm analogous to that of linear probing.

A simple method: a logical deletion (adding an erase bit).

Hashing / Deletion algorithms

Internal chaining

D.E ZEGOUR - ESI 8

Suppose we want to delete the element d.

Search for the element.

Let i be its primary address, and j be the index of element d. (i can be equal to j.)

So, i is the list that contains d.

 d1 . d2 . d . d3 . y . d4 .

ji

Hashing / Deletion algorithms

D.E ZEGOUR - ESI 9

The algorithm is as follows:

1. Check if there is another data element y further along in the list (starting from element j) such that the
list h(y) passes through j.

2. If y does not exist, remove d from the list by adjusting the chaining, and the algorithm terminates.

3. If y exists, move it to position j. Set j := index of y and d := y, then restart from step 1.

In both cases, update the variable R as follows:
(assuming k is the index of the deleted element) IF k > R: R := k + 1 ENDIF

 d1 . d2 . d . d3 . y . d4 .

ji
Hashing / Deletion algorithms

Internal chaining

D.E ZEGOUR - ESI 10

Deleting data c
Reminder: a(3), b(2), c(3), d(2), e(1), f(3)

- c is found at j=6.
- The primary address of c is i=3.
- There exists y such that the list h(y)
passes through 6 (y=f).
- Since the list that starts at 3 passes
through j=6, f will be moved to position 6.

0

1

2

3

4

5

 b 5

 a 6

 f .

 d .

 e .

6 c 4

R

0

1

2

3

4

5

 b 5

 a 6

 d .

 e .

6 f 4

R

 a . c . f .

3 6 4

ji

 a . f .

3 6

ji

Hashing / Deletion algorithms

Internal chaining

Separated chaining

D.E ZEGOUR - ESI 11

The algorithm for deleting an element is very simple. It simply involves removing an element from a
linked list.

Hashing / Deletion algorithms

