Hashing

Deletion algorithms

D.E ZEGOUR
Ecole Supérieure d'Informatique
ESI

HaShing / Deletion algorithms

Linear probing
Let i be the element to delete (d).

Primary address of d : any possible address

h(d) =i
h(d) <i
h(d) > i

1. Make T(i) empty.
Letj:=1i.

2.i=i-1;Ifi<0:i:=i+ M

3. If T(i) is empty, the algorithm ends.
Otherwise, let r := h(T(i)).

T[]

d

HaShing / Deletion algorithms

Linear probing

1. Make T(i) empty. I r<i
Letj:=i. CTTTTTT

2.i=i-1;1fi<0:i=i+M
3. If T(i) is empty, the algorithm ends. e ERNREREE
Otherwise, let r := h(T(i)). J
4. CASE i< j r>=]
Ifr<iorr2j:

Move the element, i.e., T(j) := T(i)

Goto 2

Otherwise, Goto 1

HaShing / Deletion algorithms

Linear probing

1. Make T(i) empty.
Letj:=1i.

2.i=i-1L;Ifi<0:i:=i+M j<=r<i

3. If T(i) is empty, the algorithm ends.

Otherwise, let r := h(T(i)). ! ::::::: : : ::
4.CAS1>)
Fi<r<i
Move the element, i.e., T(j) := T(i) IR ¥
Go to 2 EREEETRE R

Otherwise, Goto 1

HaShing / Deletion algorithms

Linear probing

Deleting data e

Primary addresses : a(3), b(2), c(3), d(2), e(1)
Make T(5) empty

Previous cell (T(4)) is empty : the algorithm
ends

HaShing / Deletion algorithms

Linear probing

Deleting data a
Primary addresses : a(3), b(2), c(3), d(2), e(1)

- Make cell 3 empty.

- Since cell 2 is not empty, the algorithm
continues.

- As b is in its primary address (h(b) = 2), it will
not be moved, and the algorithm continues.

- The primary address of c is 3; c will be moved
to position 3. The algorithm continues since the
cell before c is not empty.

d will be moved to position 1.

e will be moved to position 0.

(on o || M

HaShing / Deletion algorithms

Double hashing

One cannot find an algorithm analogous to that of linear probing.

A simple method: a logical deletion (adding an erase bit).

HaShing / Deletion algorithms

Internal chaining
Suppose we want to delete the element d.
Search for the element.
Let i be its primary address, and j be the index of element d. (i can be equal to j.)

So, i is the list that contains d.

di | —+—> d2 | .—+—> d . d3 | —/—

dl —> A2 | 4+— d | 4/— d3| —F— vy

HaShing / Deletion a}lgori;hms

Internal chaining

The algorithm is as follows:

1. Check if there is another data element y further along in the list (starting from element j) such that the
list h(y) passes throughj.

2. If y does not exist, remove d from the list by adjusting the chaining, and the algorithm terminates.

3. If y exists, move it to position j. Set j := index of y and d :=y, then restart from step 1.

In both cases, update the variable R as follows:
(assuming k is the index of the deleted element) IFk > R: R :=k + 1 ENDIF

d4

HaShing / Deletion algorithms

Internal chaining

Deleting data ¢
Reminder: a(3), b(2), c(3), d(2), e(1), f(3)

- ciis found at j=6.

- The primary address of cis i=3.

- There exists y such that the list h(y)
passes through 6 (y=f).

- Since the list that starts at 3 passes
through j=6, f will be moved to position 6.

N

oo Ui b~ W

N

oo Ui b~ W

HaShing / Deletion algorithms

Separated chaining

The algorithm for deleting an element is very simple. It simply involves removing an element from a
linked list.

