C Language Overview

D.E ZEGOUR
Ecole Supérieure d'Informatique
ESI

C Language Overview

Program Structure

Include Files
Declaration of global variables

Function 1

Function 2
%k

*

Function n
Main program

The main program starts with main().

C Language Overview

Example of a C Program

#include <stdio.h> void Ass_val_Li(Pointer_Li P, Typeelem_Li Val)
#include <stdlib.h> {
#include <Time.h> P->Val = Val ;
}
/** Implementation- **\: LIST Of INTEGERS**/ void Ass_adr_Li(Pointer_Li P, Pointer_Li Q)
{
typedef int Typeelem_Li ; P->Next =Q;
typedef struct Cell_Li * Pointer_Li; }
Pointer_Li Next_Li(Pointer_Li P)
struct Cell_Li { return(P->Next) ; }
{ Typeelem_Li Cell_value_Li(Pointer_Li P)
Typeelem_Li Val; { return(P->Val) ; }
Pointer_Li Next ; void Free_Li (Pointer_Li P)
b {free (P);}
/** Variables of main program **/
Pointer_Li Allocate_cell_Li (Pointer_Li *P) Pointer_Li L=NULL;
{
*P = (struct Cell_Li *) malloc(sizeof(struct Cell_Li)) ; /** Standard functions **/
(*P)->Next = NULL; int Randnumber(int N)

} {return (rand() % N); }

C Language Overview

Example of a C Program

/** Function prototypes **/
void Display (Pointer_Li *L);
void Create (Pointer_Li *L);

void Display (Pointer_Li *L)

{

/** Local variables **/
Pointer_Li P=NULL;

/** Body of function **/

P =*L;

while(P = NULL) {
printf (" %d", Cell_value_Li(P)) ;
P = Next _Li(P);

}

}

void Create (Pointer_Li *L)

{

/** Local variables **/
Pointer_Li P=NULL;
Pointer_Li Q=NULL;

intl;

int N;

/** Body of function **/

printf (" %s", "Number (N) of elements to put in the linked list:") ;

scanf (" %d", &N) ;

printf (" %s", "N=");

printf (" %d", N) ;

*L = NULL;

for(1 = 1;1<= N; ++I){
Allocate_cell Li (& P);
Ass_val_Li (P, Randnumber(1000)) ;
if(*L == NULL) {

*L=P}

else { Ass_adr Li(Q,P); };
Q=P;

b

Ass_adr Li(P,NULL);

}

int main(int argc, char *argv[])

{

srand(time(NULL)); Create (&L);

system("PAUSE");

return O;

Display (&L);

C Language Overview

Simple Data Types

The C language deals with several types of variables.

The most commonly used ones are as follows, along with their
equivalents in Pascal:

C Pascal
char char
int integer
float real

In C, there is no boolean type. The value 0 represents False,
and any value different from O represents True.

C Language Overview

Definition of types

A type is defined as follows: Field 1, ... Field n are definitions of variables of any
type.
struct StructureName
{ Variables of this type are defined as:
Field 1;
Field 2; StructureName N1, N2, ...;
Field n;
}

Access is done using the dot notation.

N1.Fieldl

C Language Overview

Arrays

The index of the first element is O.

_ The last element has an index of size - 1.
An array is declared as follows:

TypeName[size]
Example : int A(20); char P(10)

C Language Overview

Strings

A string is an array of characters. Every string must end with the null
character '\0'".

Here are some string operations:

strcat(s1, s2): s1 receives the concatenation of s1 and s2.

strcmp(sl, s2): returns O if s1 = s2, a positive value if s1 > s2, and a negative value if s1 < s2.
strcpy(s1, s2): copies s2 into s1.

strlen(s): gives the number of characters in s, including '\0'.

C Language Overview

Expressions

Here is the correspondence between Pascal and C operators:

C PASCAL
Arithmétique +,-% /[, % +,-, %, /, Mod
Logique I, &&, || Not, And, OR

Relation < <=, > >=, = == <, <=, >, >=, <>, =

C Language Overview

Statements

The main C instructions are as follows:

Block: {Declarations; instl1; inst2; ... instn}
Assignment: V = Expression

Composite Instruction: {instl; inst2; ... instn}

Conditional: if (expression) inst

Alternative: if (expression) inst else inst

While Loop: while (expression) inst

For Loop: for (initialization; condition; expression) inst

C Language Overview

Some shortcuts

i++ i=i+1
X+=Y X=X+Y
A*=B+C A=A*(B+C)

C Language Overview

Basic Input/Output Functions

Here are some basic input/output operations:

getchar(): reads a character from the screen.
putchar(): writes a character to the screen.

gets(): reads a string of characters from the screen.
puts(): writes a string of characters to the screen.

printf("format string", argument list):
reads data from the screen controlled by formats.

"format string" consists of two things:
a) the characters to print
b) the format of arguments starting with %

C Language Overview

Basic Formats

Format
%cC

%d, %i
%f

%s

%0

%X

\n

\f

\\

Explanation

character

decimal
floating-point decimal
string of characters
octal

hexadecimal

newline

form feed

backslash

Formats can be preceded by a width. It is the number of characters
on which the data will be written.

Example:
printf("This is an %s %d %c", example, 10, '.") gives ‘This is an example
10.

Example :

scanf("%d %S3, &cpr, &add)

reads a decimal into cpr, then reads a string of characters into
add.

C Language Overview

Other Input/Output Functions

fscanf():
fprintf():
fopen():
fclose():
feof():

rewind():

similar to the scanf() function, except it reads data from a file.

similar to the printf function, but it outputs to a file.

opens a file for use and returns a pointer that identifies the file.

closes a previously opened file.

predicate equal to true if the end of the file is reached, false otherwise.

positions the file pointer at the beginning of the file.

C Language Overview

Other Input/Output Functions

Opening a file is done as follows:
fp = fopen("physical file name", mode)
where fp is declared as File *fp.

The mode can take the following values:
"r'": open the file in read mode
"w": create a file in write mode
"r+": open a file for read/write

"w+": create a file for read/write

To use all the functions we've described, we need to include the stdio.h file in the program's declaration
section: #include <stdio.h>

C Language Overview

Procedures and functions

In C, we only talk about The form of a procedure declaration is as follows:
functions. However, you

can simulate procedures type FunctionName(parameter declaration lists)
using the void keyword. {

Declaration of local variables
Instructions

}

The return statement must exist and return the value of the function.

C Language Overview

Procedures and functions : Example

void Interchanger(int *X, int *Y);
{
int Temp;
Temp = *X;
*Y = *X;
*Y = Temp
}
main()
{
X=10;
Y =20;
Interchanger(&X, &Y);
printf("X = %d, Y = %d", X, Y);
}

C Language Overview

Buffered File Operations

The Clanguage has a library of functions for performing file operations in buffered mode. These
functions include:

fread(&buffer, sizeof(buffer), 1, fp): reads the current record into the Buffer area. sizeof() is a function
that returns the size of a variable (in bytes).

fwrite(&buffer, sizeof(buffer), 1, fp): writes the Buffer area to the file at the current position.
fseek(fp, offset, origin): moves to a position in the file.

offset is the number of records from the origin.
origin can be 0 (beginning of the file), 1 (current position), or 2 (end of the file).

C Language Overview

Buffered File Operations

Buffer is a structure of a certain type.

The logical file fp is declared as FILE *fp.
The fopen and feof operations are used in this mode.

To use all the functions we've described, we need to include
the stdio.h file in the program's declaration section: #include <stdio.h>.

C Language Overview

Example : C Program

#include <stdio.h>

struct Typeblock
{

int Nb;

int Tab[10];

Iy

FILE *Fp ;
struct Typeblock Buffer;
intI;

main()
{
Fp = fopen("F.c", "w+b");
for (1=0; I<10; 1++)
{
Buffer.Nb = 10*I;
Buffer.Tab[1] =50%*I;
fwrite(&Buffer, sizeof(Buffer), 1, Fp);

}

Buffer.Nb = 666;

Buffer.Tab[1] = 999;

|=6;

fseek (Fp, (long) ((I-1)* sizeof(struct Typeblock)) ,0);
fwrite(&Buffer, sizeof(Buffer), 1, Fp);

rewind(Fp);
printf(" Buffer Size= %d \n", sizeof(Buffer));
for (1=0; I<10; [++)
{
fread(&Buffer, sizeof(Buffer), 1, Fp);
printf(" Nb = %d, Tab(1) = %d\n ", Buffer.Nb, Buffer.Tab[1]);

}

=7;

printf("Reading the %d -th block \n",!);

fseek (Fp, (long) ((I-1) * sizeof(struct Typeblock)) , 0);
fread(&Buffer, sizeof(Buffer), 1, Fp);

printf(" Nb = %d, Tab(1) = %d\n ", Buffer.Nb, Buffer.Tab[1]);

C Language Overview

Example : Results

Buffer Size= 44

Nb=0, Tab(1)=0

Nb =10, Tab(1)=50
Nb =20, Tab(1)=100
Nb =30, Tab(1)=150
Nb =40, Tab(1)=200
Nb =666, Tab(1)=999
Nb =60, Tab(1)=300
Nb =70, Tab(1)=350
Nb =80, Tab(1)=400
Nb =90, Tab(1)=450
Reading the 7 -th block
Nb =60, Tab(1)=300

