
Binary trees
Traversal-Navigation

D.E ZEGOUR
Ecole Supérieure d'Informatique

ESI

Binary trees : Traversal & Navigation

With a stack

Traversal Navigation

2D.E ZEGOUR - ESI

How to go from one node to another ?Visit all the nodes in a given order

Iterative algorithms

With a stack Without a stack

With the Parent operation With node threading

With the Parent operation

With node threading

Recursive algorithms

Inorder(n) :

IF n <> nil

 Inorder (Lc(n))

 Write (Node_value(n))

 Inorder(Rc(n)

ENDIF

Recursive traversal

3D.E ZEGOUR - ESI

Inorder traversal
a

d

c

b

fe g

n1

n2 n3

n4 n5 n6

n7

In(n1) = In(n2), a, In(n3)

In(1) = In(n4), b, In(n5), a, In(n3)

In(1) = e, b, In(n5), a, In(n3)

In(1) = e, b, In(7),f, a, In(n3)

In(1) = e, b, c, f, a, In(n3)

In(1) = e, b, c, f, a, In(6), d

In(1) = e, b, c, f, a, g, d

Formula : T1 n T2

Binary trees : Traversal

Iterative traversal with a stack

4D.E ZEGOUR - ESI

With each visit to a node,
If it has a right child, we continue to descend
always to the left of this node by stacking all
the nodes.

Inorder traversal

Consequence: The stack
contains all the nodes not
yet visited through which we
exit on the left.

P

Visited node

Stacking

P

Nil

Visited node

Stack top

P
Nil

Visited node

Stack top

With each visit to a node,
- If it does not have a right child, the next one
to visit is at the top of the stack.

Binary trees : Traversal

P := A ; Createstack(Pil)
Possible := TRUE
WHILE Possible
 WH P <> NIL
 Push(Pil , P)
 P := LC(P)
 EWH
 IF NOT Empty_stack(Pil)
 Pop(Pil , P)
 Write(INFO (P))
 P := RC(P)
 ELSE
 Possible := FALSE
 ENDIF
ENDWHILE

5D.E ZEGOUR - ESI

Pushing nodes

Inorder traversal

Pop, visit and go to the right

Binary trees : Traversal
Iterative traversal with a stack

P := Root
Possible := TRUE
WHILE Possible
 WHP # NIL
 Q := P
 P := Lc(P)
 EWH
 Write(Node_value(Q))
 IF Rc(Q) <> NIL
 P := Rc(Q)
 ELSE
 Go back
 ENDIF
ENDWHILE

P := Parent(Q)
Continue := TRUE
WHILE(P <> NIL) AND Continue
 IF Q = Rc(P)
 Q := P
 P := Parent(P)
 ELSE
 IF Rc(P) = NIL
 Write(Node_value(P))
 Q := P
 P := Parent(P)
 ELSE
 Continue := FALSE
 ENDIF
 ENDIF
 ENDWHILE
 IF P <> NIL
 Write(Node_value(P))
 P := Rc(P)
ELSE
 Possible := FALSE
ENDIF

 Go back

6D.E ZEGOUR - ESI

Go back to the first node through
which we ascend on the left that
has a right child.

Inorder traversal

Q
Nil

Nil

Write it

Binary trees : Traversal
Iterative traversal with the Parent operation

a

d

c

b

fe g

NILExploit the right child field of nodes if it is
equal to Nil.

Instead of pointing to NIL, it will point to the
Inorder successor.

Requires an additional field to distinguish
between threaded nodes and non-threaded
nodes.

Add to the abstract machine : Threaded(P)
Ass_Threaded(P, Bool)

Threaded Binary Search trees

7D.E ZEGOUR - ESI

Binary trees : Traversal

In the search phase, save the last node (let's call it
Q) through which we exit on the left.

The created leaf will point to its right to the node
Q.

8D.E ZEGOUR - ESI

Created leaf

Q

Created leaf

Q

Binary trees : Traversal
Threaded Binary Search trees

 P := Root
 WHILE P <> NIL
 WH P # NIL
 Q := P
 P := Lc(P)
 EWH;
 Write(Node_value (Q))
 P := Rc(Q)
 WH (Threaded(Q)) AND (P # NIL)
 Q := P
 Write(Node_value(Q))
 P := Rc(Q)
 EWH
 ENDWHILE

9D.E ZEGOUR - ESI

Inorder traversal

a

d

c

b

fe g

NIL

Binary trees : Traversal
Iterative traversal with node threading

IF Rc(P) <> NIL
 P := Rc(P)
 WH Lc(P)<> NIL
 P := Lc(P)
 EWH;
 Next_inorder := P
ELSE
 Pop(a_stack, N,Possible)
 Stop := False;
 WH NOT Stop AND Possible
 IF P = Lc(N)
 Stop := True
 ELSE
 P:= N
 Pop(a_stack, N, Possible)
 ENDIF
 EWH
 IF Stop

 Next_inorder := N
 ELSE

Next_inorder := NIL
 ENDIF
 ENDIF

Navigation using a stack

10D.E ZEGOUR - ESI

P has a right child

P does not have a right child

The stack contains the path
from the root to the parent
of P.
If the stack is empty,
possible = False.

P

P

Next inorder

Binary trees : Navigation

 IF Rc(P) <> NIL
 P := Rc(P) ;
 WH Lc(P) <> NIL
 P := Lc(P)
 EWH;
 Next_inorder := P
 ELSE
 Q := Parent(P)
 Continue := TRUE
 WH (Q <> NIL) AND Continue
 IF P = Rc(Q)
 P := Q
 Q := Parent(P)
 ELSE
 Continue := FALSE
 ENDIF
 EWH;
 IF Q <> NIL
 Next_inorder := Q
 ELSE
 Next_inorder := Nil
 ENDIF
 ENDIF

Navigation using the Parent operation

11D.E ZEGOUR - ESI

P has a right child

P

P does not have a right child

P

Next inorder

Binary trees : Navigation

IF Threaded(S)
 Next_inorder := Rc(S)
ELSE
 P := Rc(S)
 WH Lc(P) # NIL
 P := Lc(P)
 EWH
 Next_inorder := P
ENDIF

Navigation using node threading

12D.E ZEGOUR - ESI

Next inorder

Threaded node
S

Threaded node

S

Non Threaded node

S

Binary trees : Navigation

Synthesis

We considered right-threaded binary trees; we can consider left-threaded binary
trees.

For the traversal, we considered the inorder; we can redo everything with the
preorder and the postorder.

For navigation, we considered the next inorder; we can redo everything with the
next preorder and the next postorder.

13D.E ZEGOUR - ESI

Binary trees : Traversal & Navigation

14D.E ZEGOUR - ESI

Nil

Current node
P

Current node
P

It refers to the right child, if it exists, of the
first node encountered as we ascend to the
left.

It’s the right childIt’s the left child

Next preorder

Current node
P

Nil

Nil

Nil

Navigation : additional information

Binary trees : Navigation

15D.E ZEGOUR - ESI

P
Current node

P

It’s the leftmost leaf of the right sub tree of
node Q

It’s the parent of P

Next postorder

Nil
P
Current node

Q

Etc

Navigation : additional information

Current node

Binary trees : Navigation

Educational software : Accrobaties on binary search trees

Construction, Traversal, Navigation

3 types of trees : Binary search tree, AVL tree, threaded tree

With and without animation

Presentation of abstract machines

More than thirty Java programs

16D.E ZEGOUR - ESI

http://zegour.esi.dz/Cours/Animation%20arbres.htm

Binary trees : Traversal & Navigation

