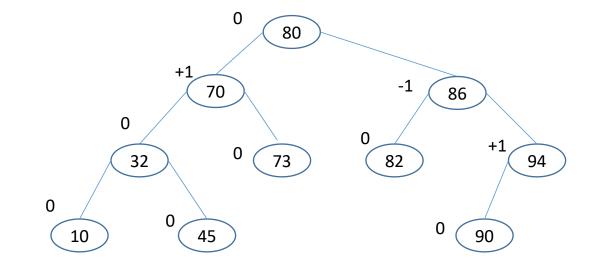
D.E ZEGOUR Ecole Supérieure d'Informatique

ESI

Definition

An AVL tree is a balanced binary search tree

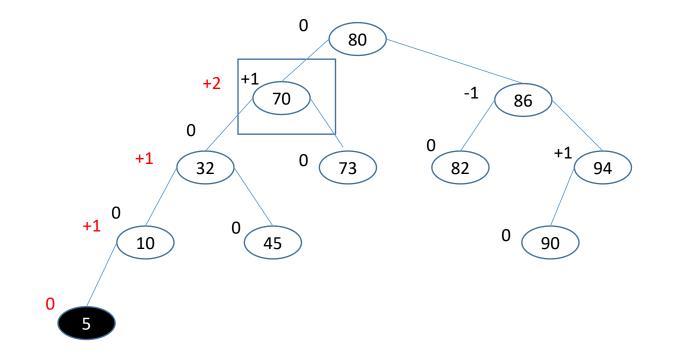
G.M. Abelson-Velskii et E.M. Landis



For any node n: | Depth(LC(n)) - Depth(RC(n)) $| \leq 1$

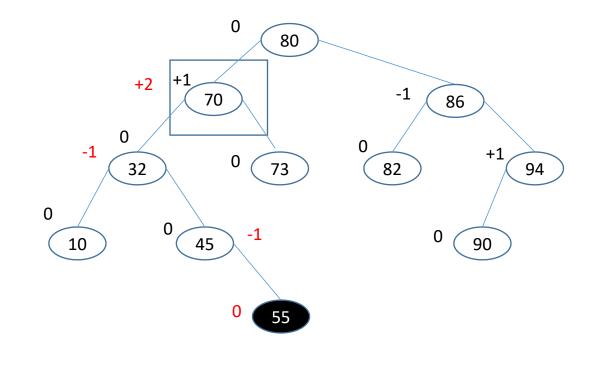
Requires adding a Balance field (or balance factor) within each node.

Insertion : Imbalance Case



Example 1

Insertion : Imbalance Case



Example 2

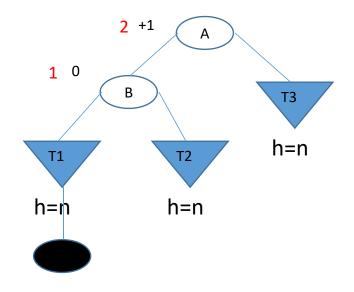
Insertion : Balancing Technique

Let's examine a subtree of root A having a balance factor equal to +1

Node A therefore has at least one node to its left, let's call it B.

Case 1 : The new node (in black) is inserted into the left subtree of B.

So, f(B) becomes 1 and f(A) becomes 2

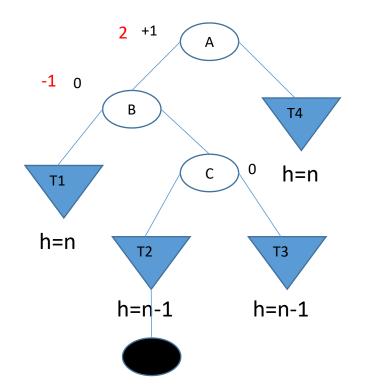


Insertion : Balancing Technique

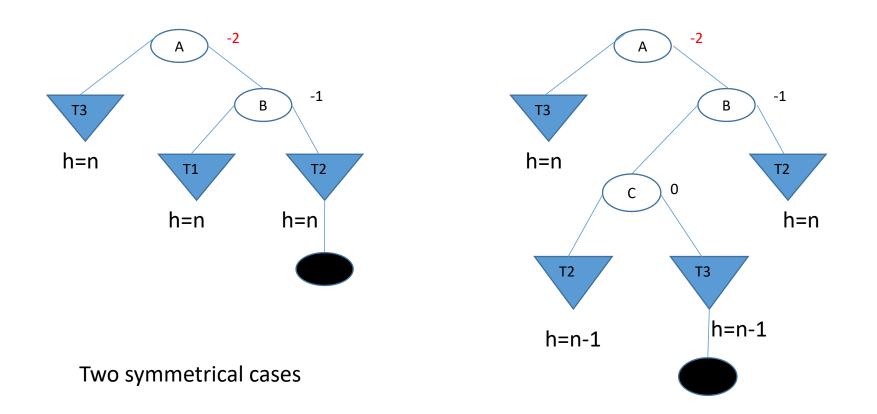
Case 2 :The new node is inserted into the right subtree of B.

Node B, therefore, has at least one node to its right.

f(B) becomes -1 and f(A) becomes 2.



Insertion : Balancing Technique



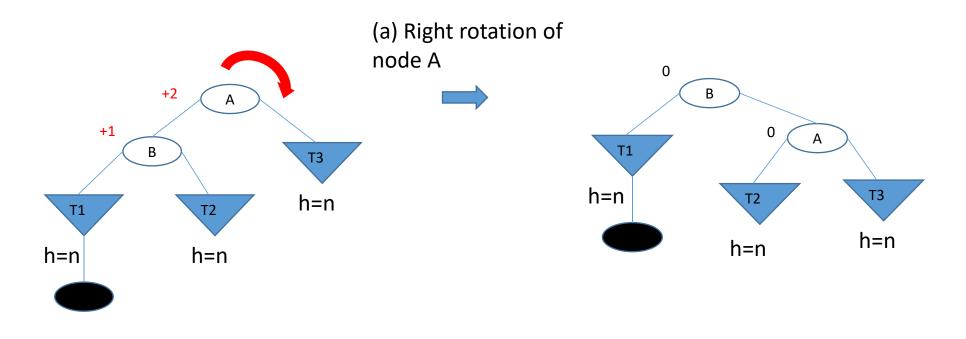
Insertion : Balancing Technique

Transform the unbalanced tree in such a way that:

(i) The inorder traversal is preserved.

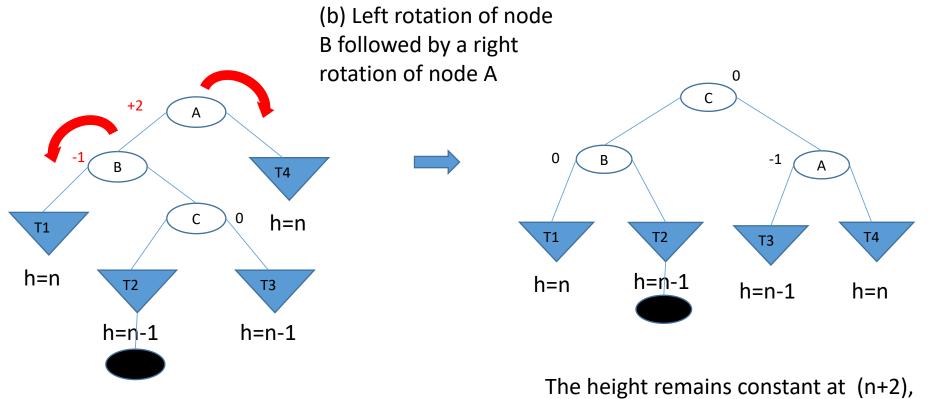
(ii) The transformed tree is balanced according to the definition of AVL trees.

Insertion : Balancing Technique



The height remains constant at (n+2), the algorithm comes to a halt.

Insertion : Balancing Technique



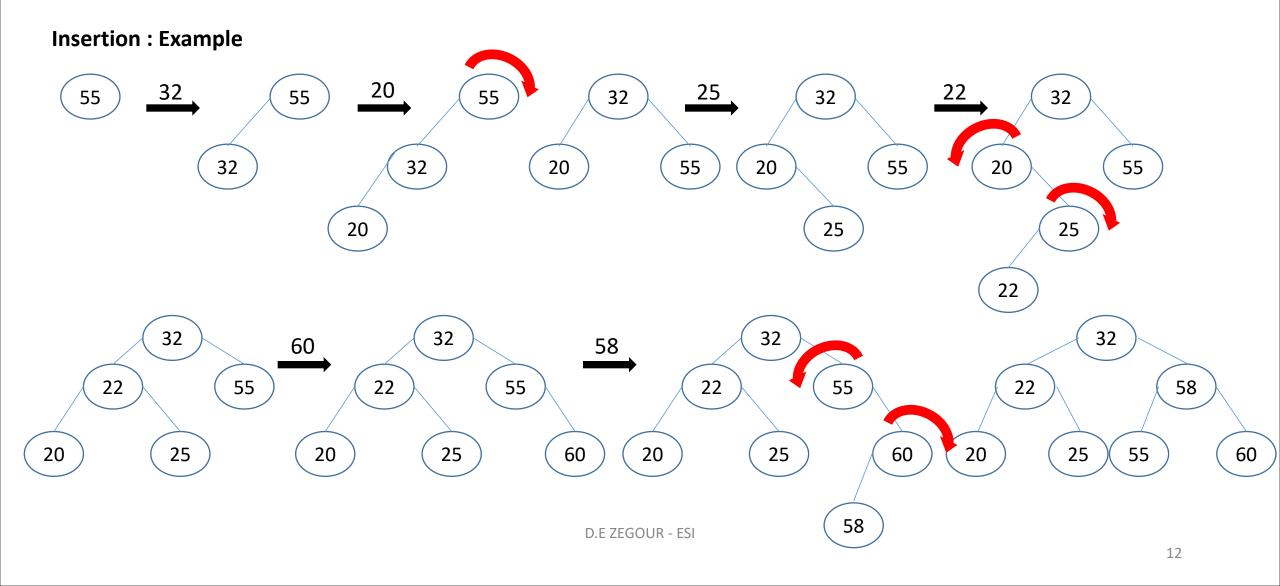
the algorithm comes to a halt.

Insertion : Balancing Technique

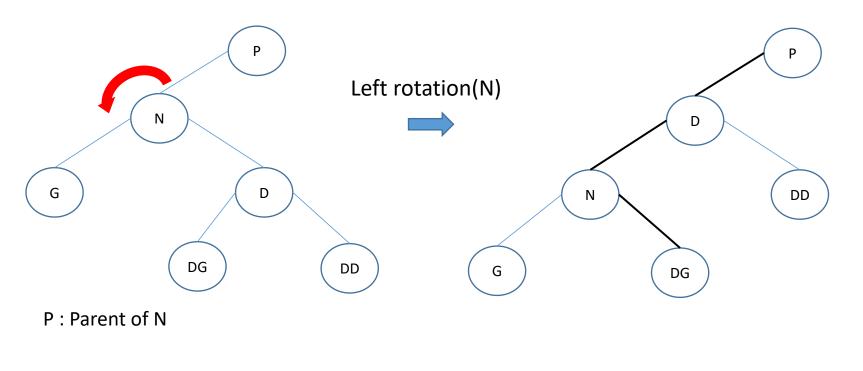
The first part of the algorithm involves inserting the data into the tree without considering the balance factor.

Update the balances and find the youngest ancestor, namely Y, which becomes unbalanced.

The second part carries out the transformation starting from Y.

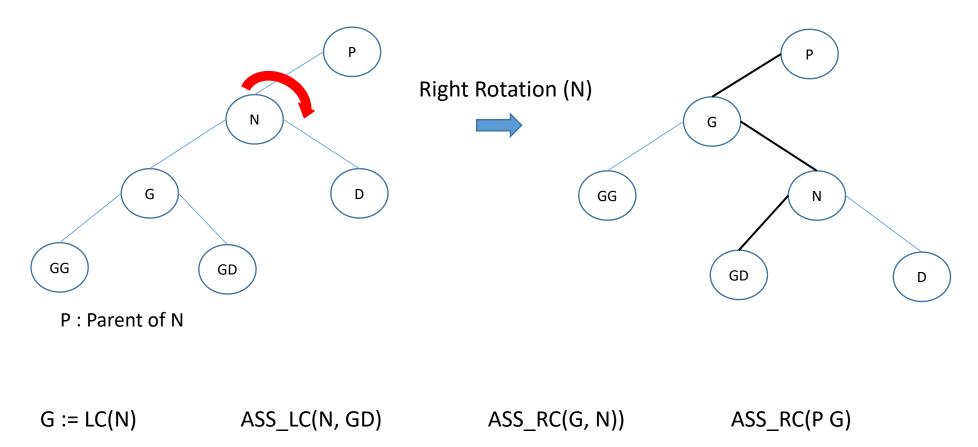


Left Rotation : Algorithm



 $D := RC(N) \qquad ASS_RC(N, DG) \qquad ASS_LC(D, N)) \qquad ASS_LC(P, D)$

Right Rotation : Algorithm



Deletion: Principle

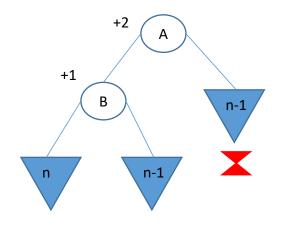
Step 1: as in an ordinary binary search tree.

Step 2 : Update balance factors

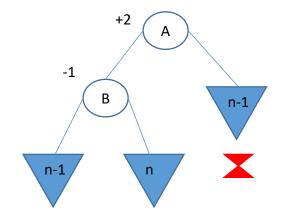
Step 3 : If a balance factor is violated, maintenance

Deletion : Balancing Technique

Case where the balance factor of node A becomes +2 → The left child B of A must exist



B has a balance equal to + 1



B has a balance equal to

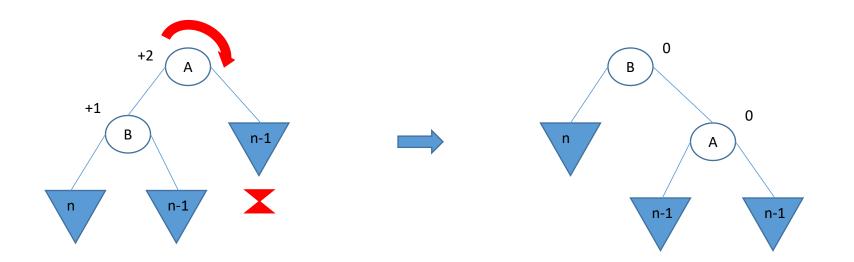
-1

+2 A 0 B n-1 n n

B has a balance equal to 0

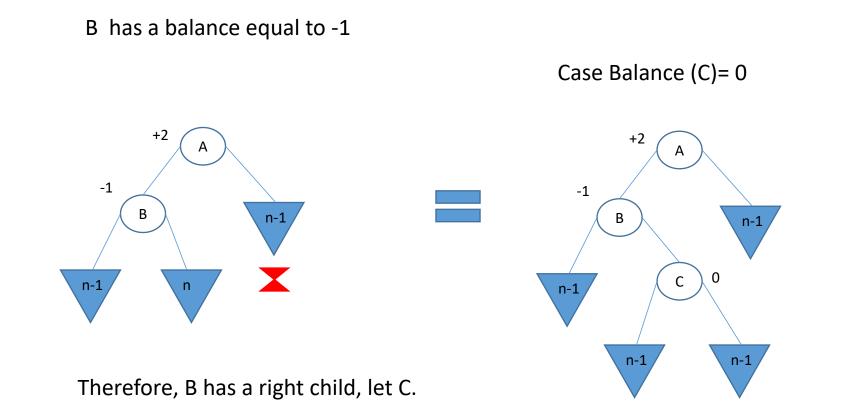
Deletion : Balancing Technique

B has a balance equal to + 1



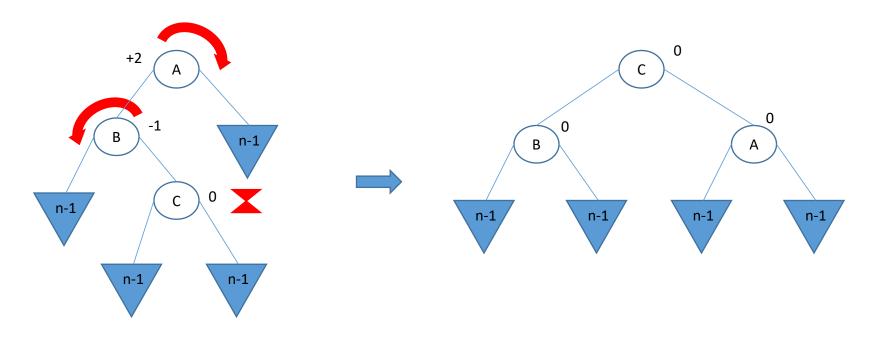
The height changes from (n+2) to (n+1), with a possible cascade effect.

Deletion : Balancing Technique



Deletion : Balancing Technique

B has a balance equal to -1, C is its right child with a balance equal to 0

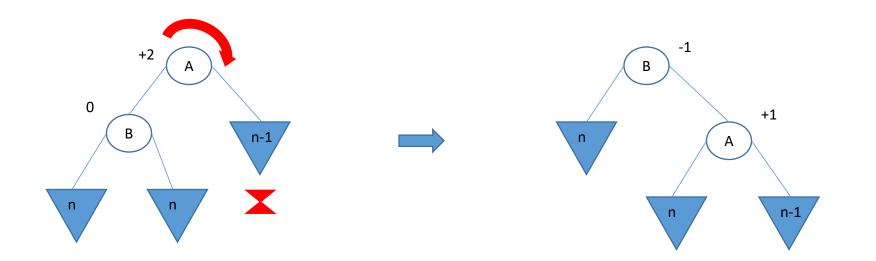


The same goes for balance(C) = +1 or -1.

The height changes from (n+2) to (n+1), with a possible cascade effect.

Deletion : Balancing Technique

B has a balance equal to 0



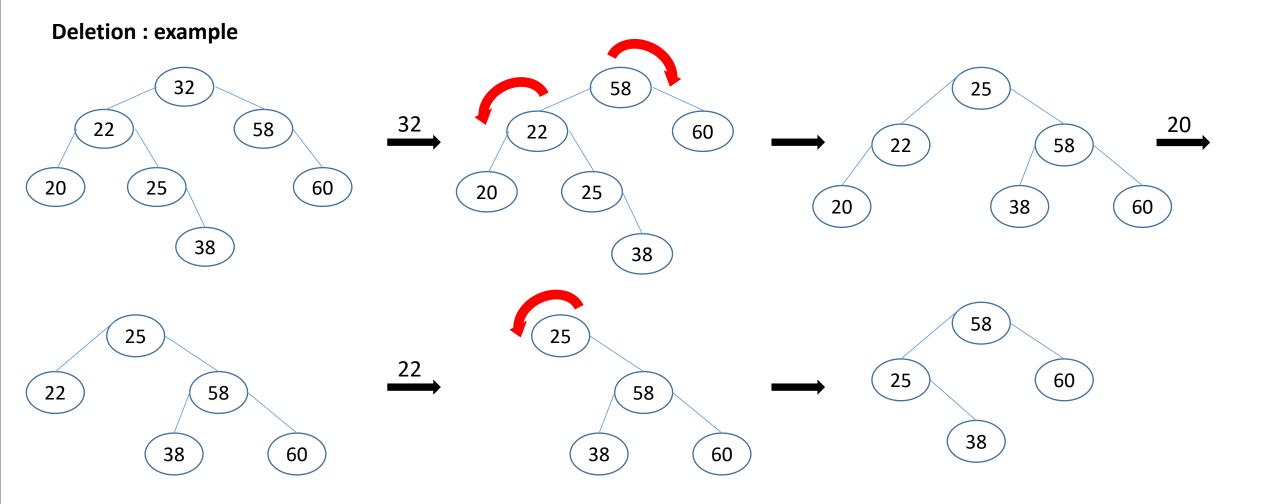
The height (n+2) does not change, no cascade.

Deletion: Principle

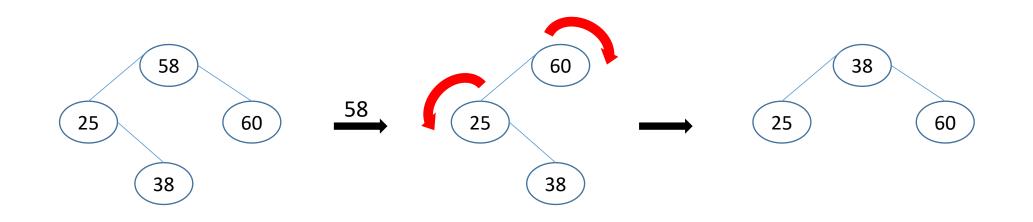
Symmetrical treatment in the case where the balance of a node A becomes -2.

Case where the balance factor of node A becomes - 2 → The right child B of A must exist

The following cases may occur: B has a balance equal to +1, B has a balance equal to -1, B has a balance equal to 0



Deletion : example



Synthesis

Maximum depth of a balanced binary tree: 1.44 * Log2n.

Searching in such a tree never requires more than 44% additional comparisons than for a complete binary tree.

Maintenance operations: Restructuring = 1 rotation or double rotation

Insertion: at most 1 restructuring Deletion: at most Log2(N) restructurings"