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An AVL tree is a balanced binary search tree

Requires adding a Balance field (or balance factor) within each node.
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For any node n:
| Depth(LC(n)) - Depth(RC(n)) | ≤ 1
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Definition

G.M. Abelson-Velskii et E.M. Landis
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Example 1

Insertion : Imbalance Case
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Example 2

Insertion : Imbalance Case

AVL Trees



Let's examine a subtree of root A 
having a balance factor equal to +1

Node A therefore has at least one 
node to its left, let's call it B. 
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Case 1 : The new node (in black) is inserted into 
the left subtree of B. 
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1

2

Insertion : Balancing Technique 

So, f(B) becomes 1 and f(A) becomes 2
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Case 2 :The new node is 
inserted into the right 
subtree of B. 
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f(B) becomes -1 and f(A) becomes 2.

Node B, therefore, has 
at least one node to its 
right. 

-1

2

Insertion : Balancing Technique 
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BTwo symmetrical cases

Insertion : Balancing Technique 
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Transform the unbalanced tree in such a way that:

(i) The inorder traversal is preserved.

(ii) The transformed tree is balanced 
according to the definition of AVL trees.
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Insertion : Balancing Technique 
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(a) Right rotation of 
node A
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The height remains constant at  (n+2), 
the algorithm comes to a halt.

Insertion : Balancing Technique 

AVL Trees



(b) Left rotation of node 
B followed by a right 
rotation of node A
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Insertion : Balancing Technique 

AVL Trees

The height remains constant at  (n+2), 
the algorithm comes to a halt.



The first part of the algorithm involves inserting the data into the 
tree without considering the balance factor.

Update the balances and find the youngest ancestor, namely Y, 
which becomes unbalanced.

The second part carries out the transformation starting from Y.
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Insertion : Balancing Technique 

AVL Trees
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Insertion : Example 
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Left rotation(N)

P : Parent of N 
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D := RC(N)

Left Rotation : Algorithm

AVL Trees
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14D.E ZEGOUR - ESI

G := LC(N)

Right Rotation  : Algorithm

AVL Trees



Step 1: as in an ordinary binary search tree.

Step 2 : Update balance factors
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Deletion: Principle

Step 3 : If a balance factor is violated, maintenance

AVL Trees
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Case where the balance factor of node A becomes +2  
 The left child B of A must exist
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Deletion : Balancing Technique
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B  has a balance equal to + 1
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The height changes from (n+2) to (n+1), 
with a possible cascade effect.

Deletion : Balancing Technique

AVL Trees



B  has a balance equal to -1

Therefore, B has a right child, let C.

Case Balance (C)= 0
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Deletion : Balancing Technique

AVL Trees



B  has a balance equal to -1 ,  C  is its right child with a balance equal to 0
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The same goes for balance(C) = +1 or -1.
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Deletion : Balancing Technique

AVL Trees

The height changes from (n+2) to (n+1), 
with a possible cascade effect.



B  has a balance equal to  0
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The height (n+2) does not change, no cascade.

Deletion : Balancing Technique

AVL Trees



Symmetrical treatment in the case where the balance of a node A becomes -2.
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Deletion: Principle

Case where the balance factor of node A becomes - 2  
 The right child B of A must exist

The following cases may occur: 
B has a balance equal to +1, 
B has a balance equal to –1, 
B has a balance equal to 0

AVL Trees
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Maximum depth of a balanced binary tree: 1.44 * Log2n.

Searching in such a tree never requires more than 44% additional 
comparisons than for a complete binary tree.

Maintenance operations:
Restructuring = 1 rotation or double rotation

Insertion: at most 1 restructuring
Deletion: at most Log2(N) restructurings"
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Synthesis

AVL Trees


