
* Master thesis, INI-1993
** Professor at Paris Dauphine University

Comparisons of B-trees and trie hashing

for multidimensional access*

G.LEVY
** - D.E ZEGOUR - W.K HIDOUCI

Institut National d'Informatique, Oued Smar - Alger,

0. Abstract :

With the apparition of dynamic hashing, a multitude of access methods has submerged. These methods have
been conceived for multiple keys as well as for monokey access. In addition they give good performance
searching time. In this paper, we have analyzed, mainly by simulation, two methods in a multiple attributes
environment in order to compare them : multidimensional B-trees (MBT) proposed by M. OUKSEL and P.
SCHEUERMANN [Ouk81,Sch82] and multidimensional trie hashing (MTH) conceived by E.J. OTOO [Oto87]. The
most significant results were :
1- The access performance for exact, partial and range queries defined on MTH are better than those defined on
the MBT method.
2- The average costs of MTH insertion’s and deletion’s are better than the MBT one’s.
3- The load factor is lower for MTH since it is about 40% .

Key Words :

Access method, Dynamic hashing, Trie hashing, B-trees, Multidimensional access.

1. Introduction

 Multikey access allows to address files with several attributes. Classic methods use the inverted lists. In
other words, to localize a record with a given secondary key we begin by consulting the secondary index, then
the primary one before finding the searched record. These methods require as many secondary index tables as
secondary keys appearing in a request.

 It is clear that the method limits itself to small files since the index tables are assumed to be in RAM.
Further, these methods involve periodical reorganizations for dynamic files, because of repeated records deletion
by flag.

 At the beginning of the 80's, with the introduction of dynamic hashing, several algorithms have been
developed for addressing multidimensional files. These methods use either very little RAM for their index or
practically nothing at all. We can cite : grid files [Nie84], MTH [Oto87], Interpolated hashing [Bur83]. During the
same period, B-trees, considered as the most popular file structure, have been right away extended to multiple
dimensions. [Ouk81,Sch82]

 We can compare the access method on the following points :

1. Direct access organization or tree structured organization
2. Single attribute access or multiple attributes access
3. Static organization or dynamic organization
4. Order preserved or not.

 The ideal is to have a dynamic direct access organization addressing files with multiple attributes and in
which the order is preserved. In what follows, we will consider that all records are reduced to their keys. Each

2

record can be viewed as an ordered n-uplet (k1, k2, ...kn) of values corresponding to attributes A1, A2, ...An. As
for ordinary B-trees and other tree-indexing methods, we shall assume that the file and the index reside on disk.
The bloc is the unit of transfer between RAM and disk. Let us also recall the following definitions corresponding
to requests on multiple dimension files :

- an exact match query consists of listing all the keys which respect the conditions :
(A1=K1) and (A2=K2) andand (An=Kn) where Ki is a value of attribute Ai and n is the dimension.

- a partial match query is one which specifies values for only some of indexed attributes.

- a region query is one in which a lower and upper bound is specified for each one of the attributes.
(L1≤A1≤U1) and (L2≤A2≤U2) ... and (Ln≤An≤Un)

 The rest of the paper is organized as follows : section 2 and 3 recall the schemes for MBT and MTH
organizations and describe briefly the principles of construction and the other related operations. Section 4
presents the comparative study. Section 5 concludes the paper.

2. Multidimensional B-trees (MBT)

2.1 B-trees

 Before we proceed with the MBT organization, we briefly review B-trees.

A B-tree of order m is a multiway tree which satisfies the following properties :

 - the root node has at least 2 sons
 - every other node has between m/2 and m sons
 - all leaves appear on the same level

A nonleaf node with k sons contains (k-1) keys and has the following format :

p0 k1 p1 k2 . . . kk-1 pk-1 where k1 < k2 < ... < kk-1

pi points to a subtree containing values between ki and ki+1, for i=1,2 ..., k-2
p0 points to a subtree with values less than k1; pk-1 points to a subtree with values greater than kk-1.

 Several variants of B-trees have been proposed, as B*trees, where each node is at least 2/3 full and
prefixed B-trees which use compression techniques. [Bay77]

 More details on B-trees are to be found in [Knu73].

2.2 MBT organizations :

 This organization is depicted in figure 1. It uses a directory allowing to index all attributes of the file. The
directory is a M-ary tree where each internal node (represented by a triangle) is a B-tree. The internal nodes at the
same level in the directory correspond to B-trees indexing different values of a same attribute. Then the root node
in the first level corresponds to the B-tree containing all the values of attribute A1. Each value V1, in this B-tree,
points to one of the sons' nodes in the next level (B-tree of level 2) containing values of A2 appearing with V1 in
the file. These values of A2 form the filial set of V1 at level 2. In addition, each value V2 of this set, points to one
of the sons' nodes (B-tree at level 3) containing all the values appearing together with V1 and V2 in the file. This
process continues until the leaf node is reached, containing all record addresses which respect the condition :
(A1=V1) and (A2=V2) and . . . (An=Vn)

A page inside a B-tree at level h have the following structure :

P0 K1 F1 P1 K2 F2 P2 ... Kmh-1 Fmh-1 Pmh-1 where :

 Kj : attribute value.
 Pj : Points to a sub-tree, in the same B-tree, containing some values between Kj and Kj+1.

3

 Fj : Points to the filial set of Kj in the next level (F_PTR).

Level(1)

Level(2)

Level(3)
Next Next

Next

Next

Right

Left

Right

Right

Accession List

Fig 1 : MBT STRUCTURE

Left

Left
Left

Left

Left

Right

Right

Data File

Left
Right

Next

F_PTR

F_PTR

a1 a2 a3

b1 b2

b3

b4 b5

b0 b4 b0

Attribute i

Attribute i+1

Attribute i+2

A1

B1 B2 B3

F_PTR F_PTRF_PTR

- a -

- b -

Next Next

Next

F_PTR

 Figure 1-b shows the relationship between a B-tree at level i and its filial sets at level i+1. The pointers of
the filial set associated with values of B-tree at level i are drawn with solid lines. This figure corresponds to the
file with keys :

 a1b1 a1b2 a1b3 a1b4 a1b5 a2b0 a2b4 a3b0

4

{b1,b2,b3,b4,b5} is the filial set of a1, and {b0,b4} is the filial set of a2. The leaf nodes consist of accession pages
containing each pointers to file records. These pages are organized as a linked list (horizontal lists). If one of
these pages becomes full, an orthogonal linked list is created for this page.

 The root of each B-tree holds three additional pointers : LEFT, RIGHT and NEXT which have the
following meaning :

NEXT : pointer to the right B-tree at the same level.
LEFT : pointer to the leftmost node (B-tree) at level k+1 of its filial set.
RIGHT : pointer to the rightmost node (B-tree) at level k+1 of its filial set.
In figure 1-b, these pointers are drawn with broken lines.

 In order to access directly to any level i of the directory, we dispose of pointer LEVEL(i) giving the first
B-tree of each level i. Thus, with the pointers LEVEL and NEXT, we obtain a linked list of B-trees of a same level.

2.2.1 Construction principle :

 It consists of the traversal of the directory from the root down to the leaves. Thus, we determine among
the multiple key (a1, a2, ...an), the first aj which does not exist on the path. This attribute value (a j) will be inserted
in the filial set of aj -1. The next values (a j+1, aj+2, ... an) will be inserted in the new B-trees pointed to by Fj, Fj+1, ... Fn-

1.

 In order to maintain the link between the filial sets, we also localize during the traversal the filial sets
which will precede and will succeed the new ones.

2.2.2 Other operations :

 Deleting consists of removing from the directory all values aj such as all filial set containing aj+1, aj+2, ...an
are singletons. In figure 1-b, deleting key (a2, b4) consists only of removing b4 from B2 at level i+1. Deleting key
(a3, b0) consists of removing a3 and b0 from levels i and i+1 respectively.

 Exact query consists simply of the traversal of the directory from the root down to the accession pages.
At level i, only one B-tree is accessed in order to find the value corresponding to attribute A i.

 The treatment of Partial query become very efficient with the use of pointers LEVEL, NEXT, LEFT and
RIGHT.

 In order to find all records satisfying the condition :
attribute i1 = v1 AND attribute i2 = v2 ... AND attribute iq = vq where q < n.
We first look for v1 in the linked list of B-trees pointed by LEVEL(i2). For each successful search, the F-pointers
associated with v1, will delimit the filial sets which must be treated in the next level. If this level is specified in the
query (i.e. i1+1=i2), we then look for the next value (v2) in the same manner. If this level is not specified, the LEFT
and RIGHT pointers will delimit portions of linked lists containing filial sets which must be treated in the next
level.

 Because of the ordering imposed on the filial sets on a given level and the pointers used, we can avoid
the traversal of the whole directory in the range query. At each level, only two attribute values have to be
retrieved : the closest value superior or equal to the lower bound and the closest value inferior or equal to the
upper bound. Also, thanks to F-pointers associated with upper and lower bounds, we can delimit the portion of
linked list of B-trees at the next level. The process terminates when accession pages are reached. This algorithm
uses a breath first search and consequently uses a queue for saving the pairs of pointers which delimit the
portions of accession lists containing qualified record addresses.

3. Multikey trie hashing (MTH)

3.1 Trie hashing

5

 The file is addressed through a trie created dynamically by splitting the overflowing buckets. Every trie
node contains a digit value and a digit number which will direct the search process. A leaf either holds a pointer
to a file bucket or a Nil value, which indicates that no bucket correspond to the leaf.
 More detail may be found in [Lit81,Lit85] and [Zeg87].

3.2 MTH organization

 MTH is a new method allowing the access with composite keys. It consists of keeping in core, d digital
tries separately, indexing the d different attribute values of the file. The leaf nodes retain index numbers instead of
bucket logical addresses, as described in the original version. To localize a record with key (K1, K2, ... ,Kd), we map
the d keys by applying the d tries, obtaining thus a d-uplet (i1, i2,,id). Finally, the bucket address containing the
searched record is computed through the mapping function F which transforms the d-uplet to a linear address.
Conceptually, we can say that the file buckets are represented in a d-dimensional space where the d axes are
defined by the d attributes (see fig 2-a). A point with coordinates (i1, i2, ..., id) in the space represent the file bucket
numbered F(i1,i2, ...,id) .

6

0 1 2

3 4 5

6 7 8

9

10

11

12

13

14

0 1 2 3 4

0

1

2

j1

j2

B1

B2

1 2

1

2 0 1 2 9 12

0

3

6 1

1

1

1 1 1 1 1

T1

T2

0 2

1

0 4

3 1 2

Data File

Index Arrays

0 1 2

3 4 5

6 7 8

9

10

11

12

13

14

0 1 2 3 4

0

1

2

j1

j2

B1

1 2

0

3

6 1

1

1

T1

0 2 1

15 16 17 18 19
15 1

New segment

Index array B2 and trie T2 do not change

3

3

Fig 2 : MTH STRUCTURE (Dim=2)

Trie relative to attribute 1

Trie relative to attribute 2

After some insertions, buckets 3,4,5,10 and 13 split

with a new segment (buckets 15,16,17,18 and 19) added in J1 direction

- a -

- b -

 The mapping function uses the technique of extensible arrays [Oto83] which allows to deal with the d-
dimensional array, extensible in any direction, with the addition of (d-1) dimensional bloc of buckets at each
extension. For MTH, the file represents the array with dimension d stored linearly on disk. The mapping function
uses d bi-dimensional arrays holding the first address of each bloc of buckets added. They also hold the
multiplicatif factor used in the address computation.

3.2.1 Construction Principle

7

 A record insertion can lead to a collision in a bucket if this one is full. The file is then extended by a
whole (d-1) dimensional bloc of buckets added at the end of the file whose size is :

 Π (Uj + 1), j=1,2,...d and j <> t.

t being the axis on which the extension is made and Uj being the maximal index trie Tj.
This bloc of buckets (called also segment) represents, in fact, an hyper-plane. Consequently, all the buckets
which previously had ij as common index in their d-uplet addresses are split.
We retrieve this structure in grid files[NIE 84]. Figure 2-b shows an example of file extension by adding a (d-1)
dimensional segment of buckets.

3.2.2 Other operations

 The process of deleting simply inverts the insertion procedure. If after deleting a record from a bucket, it
becomes half-full, we coalesce the segment in question with another.

 Exact query is straightforward. For each value vj specified in the request, we apply trie Tj in order to
obtain index ij. If one of ij (j=1, ...,d) is Nil, the search fails, else the bucket address which should contain the
searched record is given by F(i1, i2, ...id) where F is the mapping function.

 Partial query is one in which only some attribute values are specified. In order to find the others, the
traversal of corresponding dimensions in the d-space is necessary.

 In order to have the intervals in question in the range query, we proceed in each trie as follow : we first
search the key superior or equal to the specified lower bound to find the lower index. During this search, we built
the inorder stack. Then, we use the latter to have the next indexes.

4. Comparison of the methods :

 We can resume the comparison of access costs in the following table (more details are in [Hid93]) :

Operations MBT [Ouk81,Sch82] MTH
Exact query O(Log N) 0 or 1
Partial query O(N/N' Log N') 0 or 1
Range query O(Log N) 1
Insertion O(Log N) 2 or O(N1-1/d)
Deletion O(Log N) between 2 and O(N1-1/d)

where :
 N = File Size
 N' = Π Nj j = d-q+1, d-q+2, ... d
 d = the keys dimension
 Nj = the average filial set size at level j

4.1 MBT size

 We will present in this section an analytic study on the index size (directory) according to the number of
inserted keys in the file. The relationship between the number of inserted keys N and the average number of keys
contained in a B-tree is given by the following formula :
N = N1.N2...Nd where d is the space dimension and Nj is the average filial set size at level j.

 By assuming that the inserted keys are uniformly distributed and the range of each attribute is of the
same size, we will have :

N1 = N2 = ... = Nd = N1/d = A

Let α be the load factor of a B-tree. the number of pages contained in a B-tree is evaluated to:

8

nbp = A / αb , b being the page capacity.

The total number of pages contained in the directory (Npage) is the product of nbp by the number of B-trees (na)
in this directory. Since each B-tree of level i holds, on average, A keys, it filial set (at level i+1) consists of A
different B-trees.

Thus we have :

the number of B-trees at level 1 is one
the number of B-trees at level 2 is A
the number of B-trees at level 3 is A 2
And that way, we obtain A j-1 at level j.

The total number of B-trees is then : na = 1 + A + A 2 + ... + Ad-1

We then have Npages = nbp * (1 + A + A 2..Ad-1) = (A + A2..Ad)/αb

Thus for 100 000 uniformly distributed keys with the following considerations : d=2 ; page size = 512 Bytes (41
keys) ; α = 70%

We will have Npage = 3495.34
As one page needs 512 bytes, 3500 pages will need 1.7 Mbyte on average.

The size occupied by the linked list of accession pages is disregarded in the above calculation.

4.2 MTH size

 Let Uj be the number of leaves in Tries Tj, j=1,2...d. Since the file represents a d-dimensional array of size
(U1*U2*....Ud) the number of file buckets is N = U1 * U2 *....Ud

 The index array IXA(1..U, 1..d, 1..d) where U is Max {Ui} takes up Ud 2S where S is the size in bytes of an
array item. Trie Tj needs 6Uj if the standard representation is chosen (the number of internal nodes is the same as
the number of leaves). By assuming the keys uniformly inserted, we can consider:

U1 = U2 = ... = Ud . We then have U = N1/d

The memory space needed by MTH is d6U + Ud2S. Thus for 100 000 uniformly distributed keys, with the
following considerations : d=2 ; α = 70% and page size = 512 Bytes (63 keys)
we need less than 1 Kbytes (960 bytes) in RAM.

4.3 MBT Load factor

 We have made many simulations with different numbers of inserted keys, different dimensions and
different capacity page in order to achieve to the following conclusions : as for the others methods, the load
factor is between 60 and 70 % for random insertions and it is only about 5O% for sorted insertions. The curves
depicted in figure 3 and 4 show the evolution of directory load factor for 80 000 and 100 000 random keys
insertions with page capacity varying from 10 keys per page (128 Bytes) to 41 keys per page (512 Bytes).
The file load factor is 100%.

9

Fig 3 : MBT Load Factor
Dim=2 PageSize=128 Bytes

File Size (Number of records)

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0 10000 20000 30000 40000 50000 60000 70000 80000

Fig 4 : MBT Load Factor
Dim=2 PageSize=512 Bytes

File Size (Number of records)

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0 20000 40000 60000 80000 100000

4.4 MTH load factor

 The following curve (Fig 5) shows the average occupancy of file buckets in terms of the file size. First,
we observe a low percentage (about 38%) which is mainly due to the insertion principle. The latter consists of
extending the file by a (d-1)- dimensional bloc whose size is proportional to the file size. Second, we notice
oscillations of strong intensity of load factor at the beginning, that become week.

This behavior is due probably to the fact that the growth factor (GF) of the number of file buckets decreases as
soon as this number increases.

In other words, during the first d splits (d being the dimension) the value of GF is one. During the next d splits, GF
is only 0.5. GF is 1/3 for the next d splits, and so on...

For example, if d=2 the number of buckets increases as follows (ej represents the jith extension) :

e1 e2 e3 e4 e5 e6 e7 e8
1/1 2/2 2/4 3/6 3/9 4/12 4/16 5/20
GF=1 GF=1 GF=1/2 GF=1/2 GF=1/3 GF=1/3 GF=1/4 GF=1/4

X/Y means that X new buckets are added to the Y buckets of the file during the extension ej.

10

In general, the number of file buckets of a d-dimensional file having undergoing n splits, can be approached by :

N = (1 + n/d)d

Fig 5 : MTH Load Factor
Dim=2 PageSize=512 Bytes

File Size (Number of records)

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0 20000 40000 60000 80000 100000 120000

 Although the segment size added to the file increases in terms of the number of inserted records, these
segments represent, on the other hand, fractions smaller and smaller (in 1/n) of the whole file buckets at each
extension, which implies the load factor oscilles less and less. The dimension has also an influence on the load
factor. Indeed, when the number of attributes is great, the segment size added to the file is greater. Consequently,
the load factor lowers. For the sorted insertion, the load factor is yet lower (23%). Indeed, they have many
successive splits on the same axis, before extending the others dimensions, which implies many empty buckets or
weakly loaded ones.

5. Conclusion

 Relatively to access time, MTH offers good performances for the insertion, deletion and different
requests compared to the same operations defined on MBT. In the latter, the partial request could be very
expensive under some cases. MBT offers, on the other hand, good load factor, which is not the case for MTH. In
the latter, more than 60 % of the whole space needed by the file is empty. this is due, mainly, to the poor collision
resolution technique used. Indeed, at each collision, the file is extended by segments bigger and bigger. MTH
uses RAM to keep the whole index and the array needed for the mapping function. On the other hand, MBT
keeps in memory only some buffers to achieve the access operations. Also, MTH is very sensitive to a system
crash.

 By deeply studying the two methods, we have proposed certain extensions; the orthogonal chaining of
accession pages, the notion of logic pages for MBT, and the mechanism of deletion in the case of MTH. Thus, an
other way to avoid the weak load factor in MTH, would be to consider the multidimensional array as an index in
disk, where each item holds a bucket address.

REFERENCES

[Bay77] : Bayer R. and Unterauer K. Prefix B-trees. ACM TODS,2,1,(Mar 1977),11-26.

[Bur83] : Burkhard W.A. Interpolation-based index maintenance. BIT 23 (1983), 274-294.

[Hid93] : Hidouci W.K. Etude et comparaison des Arbres-B et du Hachage Digital
 pour l'accès multidimensionnel. Mémoire de Magister - INI 93.

[Knu73] : Knuth D.E. : The Art of Computer Programming. Vol 3, Addison-Wesley, 1973.

11

[Lit81] : Litwin W. : Trie hashing. SIGMOD 91, ACM (May 1981).

[Lit85] : Litwin W.Trie hashing:Further properties and performance. Int. Conf. F.D.O Kyoto May 1985.

[Nie84] : Nievergelt J., Hinterberger H. and Sevcik K.C. The Grid File:An adaptable,
 symmetric, multikey file structure. ACM Trans.Database syst. 9,1 (Mar 1984).

[Oto83] : Otoo E.J.and Merrett T.H. A storage scheme for extendible arrays. Computing, 31 (1983) 1-9.

[Oto87] : Otoo E.J. Multikey trie hashing for scientific and statistical databases.
 CODATA (North Holland) 1987.

[Ouk81] : Ouksel M. and Scheuermann P. Multidimensional B-trees : Analysis of dynamic behavior.
 BIT 21 (1981), 401-418.

[Sch82] : Scheuermann P. and Ouksel M.Multidimensional B-trees for associative searching
 in database systems. INFORM Systems Vol 7,2 (1982).

[Zeg87] : Zegour D.E., Litwin W. and Levy G. Multilevel Trie hashing. Rapp. Rech., INRIA, 1987.

