

1 : chargé de cours UHBC chlef 2 : professeur INI Oued Smar alger
 aridj_moh@yahoo.fr dzegour@yahoo.fr

1

Abstract :

Multidimensional trie hashing (MTH) access method
is an extension of the trie hashing for multikey dynamic
files (or databases). Its formulation consists on
maintaining in main memory (d) separated tries, every
one indexes an attribute. The data file represents an array
of dimension (d), orderly in a linear way on the disk. The
correspondence between the physical addresses and
indexes resulting of the application of the tries is achieved
by the mapping function. In average, a record may be
found in one disk access, what ranks the method among
the most efficient known. The inconvenient of MTH is
double :

 a weak occupancy of file buckets (40-50%) and an
increasing of memory space according to the file size
(tries in memory). We propose a refinement of MTH on
two levels. First, by using of the compact representations
of tries suggested in [6], then by applying the
phenomenon of delayed splitting (partial expansion) as
introduced in the first methods of dynamic hashing and
as used in [16]. The analysis of performances of this new
scheme, mainly by simulation, shows on the one hand a
high load factor (70-80%) with an access time practically
equal to one disk access and on the other hand an
increasing of file size with a factor of two with the same
space used by MTH.
1. Introduction

The first multidimensional access methods used the
inverted lists technique which associates a secondary index
to each attribute. It is clear that this type of methods is
limited to static files with modest sizes. This is mainly due
to the memory space consumed by the index tables. In
order to respond to the requirements of new applications
which require innovative solutions to storage and access
problems, several multidimensional access methods have
been developed. These methods are usually based on B-
trees [2] or dynamic hashing.[9,10,11,12,13]. On dynamic
hashing, we can take as example grid files [15] and the
MTH [19], where the main idea is that the records are
represented in multidimensional space . Further, the
relationship between the points of this space and file
buckets, is achieved by a projection function which makes
to each point correspond to bucket address on disk. While
other appear methods as interpolation hashing [17] or the
EXCEL method [22] by a unique search key, consisting of

the combination of all the attributes. Among the
multidimensional access methods based on the B-trees
structure we can cite : K-D-tree[1], K-D-B-trees[20],
multidimensional B-trees MBT [3,5], R-trees,R+tree [21],
HB-tree [4].

 In this paper, we suggest a new multidimensional
access scheme called Multidimensional compact trie
hashing with partial expansion (MCTHE) which certainly,
represents an improved version of multidimensional trie
hashing.

We organized the paper as follows: we begin with
recalling the multidimensional concepts in section 2.
Section 3 recalls the principle of trie hashing, then the one
of multidimensional trie hashing, the basis of our work. In
section 4, we introduce the new version of MTH, with the
refinements evoked beforehand. We will develop all the
related algorithms once the compact representation and
recalling the principle of partial expansion introducing.
Section 5 is devoted to the study of the performances of
the proposed schema, mainly by simulation. Section 6
compares MCTHE with MTH at all levels. Finally,
section 7 draws a concludes to the paper.
2. Concepts of multidimensional

The new applications such as those proposed for
meteorological, astronomical and design data base for
CAD and VLSI systems, process more and more complex
data. It often happens that these treatments are based on
several attributes (multikey queries). The new access
methods are responsible for such kinds of data allowing
thus a multidimensional access to data in order to
facilitate the insertion, deletion and different queries
operations.

Possible strategies for the developing of the
multidimensional access are :

• The “use multiple (k) single-attribute”: It consists of
using for each key attribute a data structure (B-tree or
hashing) independently of other attributes (

• The “mapping multiple attributes to one” : It
consists of projecting the d-dimensional space formed
by the attributes on one-dimensional

• The ”using explicitly multi-attribute indexes” : The
third approach consists of developing methods
specially for multidimensional data.

A NEW MULTI-ATTRIBUTES ACCES METHOD FOR
VOLUMINOUS FILES

M. ARIDJ1 & D.E ZEGOUR2

Institut National d'Informatique

Alger, Algeria

2

Let us recall the following definitions corresponding to
requests on multidimensional files :

• an exact match query :determines all the keys which
respect the conditions

• (A1=K1) and (A2=K2) andand (An=Kn) where Ki
is a value of attribute Ai and n is the dimension.

• a partial match query :is one which specifies values
for only some of indexed attributes.

• a region query :is one in which a lower and upper
bound is specified for each one of the attributes.
(L1≤A1≤U1) and (L≤A2≤U2) ... and (Ln≤An≤Un)

3. Multidimensional trie hashing (MTH)
3.1 Trie hashing (TH)[13]
 For trie hashing, the file is a set of records identified

by primary keys. A key is a sequence of digits of a given
alphabet. The records are stored in the buckets on the disk.
Each bucket is referred by an unique address and holds a
fixed or variable number of records.

 The file is addressed through dynamic hashing function
which generates a particular binary tree called binary trie
or Litwin's tree. The trie consists of two kinds of nodes:

1. The internal nodes are represented by couples (d,i),
where d is a digit of a given alphabet and i the position of
this digit in the searched key.

2.The external nodes or leaves represent the addresses of
file buckets containing the data file.

In the original paper of Litwin[13], trie hashing is
represented in its standard form where all the links are
explicit. Therefore each internal node consists of 4 fields.
UP :Upper(Right) pointer, LP :Lower (left)Pointer , DV:
digit value and DN: digit number. In trie hashing,
searching is made by the traversal of the trie down to
leaves which contain the record addresses. At most, one
access disk is necessary to have the record.[13,14]] Record
insertion may involve a file extension while record deleting
a file contraction. The load factor is about 70 % for
random insertions and about 60% - 70% for sorted
insertions.

3.2 Multidimensional trie hashing (MTH) [19]
MTH [19] is an extension of trie hashing for the

multidimensional access. Its formulation consists to
maintain in main memory d separates tries (Tj)j:1..d ,
indexing the various values of the d key attributes of data
file respectively(fig.1). Conceptually, the buckets of the
data file are represented in d-dimensional space where the
(d) axes are defined by the d attributes of the data file. So, a
space point with coordinates <I1,I2,.....Id> represents the
bucket returned by the mapping function applied to d-tuple
<I1,I2,.....Id>. The mapping function uses the technique of
extensible arrays[18]. It may be implemented by using (d)
two-dimensional vectors, or a single three-dimensional
array , extensible(s) in only one direction and called index
array. These are useful for storing the addresses of each
block beginning of buckets added, and the multiplicity
factors allowing to compute the offsets to add to the base
address in order to locate a multidimensional array item.

More formally, the d index arrays are of the form :
Bj[0..Uj,1..d], with Uj : maximal Index of the trie Tj. or

the equivalent index array IXA : [0..X,1..d,1..d], where
X=max{uj} j...d. the mapping function is given by the
following algorithm :

The insertion mechanism is as follows : At the

beginning, an exact match query is made to find the bucket
which must contain the record to insert. Two cases are
possible. The bucket is not full and then we simply add the
record. A splitting operation is necessary involving then an
extension of the multidimensional array(file).

An exact match query is realized by applying to each
value Vi to the trie (Ti) associated to attribute Ai. We
obtain then a d tuples <I1,I2,.....Id> on which we apply a
mapping function to retrieve the bucket address which
must contain the records verifying the query condition

A Partial match query of the form (Ai1=V1) and
(Ai2=V2)Aiq=Vq) with 1≤q<d.

 We apply on each specified attribute Aij in the query by
its value Vj the corresponding trie Tij. We obtain then a d-
tuples of the form <*,...I1,....,*,....Id,...,*> where (*)
denotes the values of indexes of non specified attributes in
the query. The potential bucket addresses to contain the
records satisfying the query are obtained by applying the
mapping function to the d_tuples <*,...I1,....,*,....Id,...,*>
where the (*) are replaced by all possible values of the
corresponding attribute (These values can be retrieved by
traversing the binary trie).

A Region query consists of sweeping all the attributes Aj
between the specified interval in the query.

The analyses of performance made on MTH in [7,18,19]
have shown that the bucket load factor is about 40 % or
less for random insertion and about 20 % for sorted
insertions. This is the major inconvenient of MTH. On the
other hand, the access cost of MTM places the method
among the fast ones known for the multidimensional
access. Indeed, searching a record (exact match query) is
accomplished in one disk access in average, while inserting
is made in two disk access in average.

Fig 1 Principe of MTH

 Trie1 . Trie d

Adresse

0 2

1

0 4

3
1 2

Mapping Function

bucket 1 Data
file

Algorithm f(j1,j2, jd) :
1.Choose t=m such as Bm[jm,m]=max{Br[jr,r]} r=1..d
2. adr=Bt[jt,t]+ Bt[jt,r]*jr with r =1 .. d et r<>t ;
3. Return (adr)

bucket n

3

4. The proposed schema : MCTHE.
MCTHE -which we suggest- is a variant of MTH, where

the tries are stored in a special form on the one hand and
the splitting are treated by the partial expansion principle
on the other hand.(fig.2) The principle of MCTHE is
similar to the one of MTH, except for two following
reasons: Firstly the trie are stored in memory in a compact
form, secondly, we delay the bucket splitting in order to
improve the load factor of the file. So, we recall below, the
PP-LR representation suggested in [6] with the
corresponding algorithms, then the partial expansion
technique.

4.1 PP-LR representation [6]
 One of the originality of MCTHE is that the tries are

stored in main memory in a compact form where the links
are implicit. The basic principle of this kind of
representation consists in placing the internal nodes in a
predefined order. Thus, we have not need of pointers. The
representation that we have used in MCTHE is the called
the PP-LR (Path by Path, Then Left to Right) one. For the
interested reader, other representations are presented in
[6].

In this representation, the trie is a sequence of external
and internal nodes. An internal node is a digit; an external
node is a pointer to a bucket. The internal nodes are stored
by paths. We first represent the internal nodes of the most
left path, from top to bottom. Then those of the path
immediately to the right in the same order, and so forth.
The external nodes follow the internal ones associated with

a path. As we represent the internal nodes from top to
bottom in a path, their level is shown implicitly in the path.
So, in the path b0b1....bn, i is the level of digit b. Then the
digits (or internal nodes) are such that b0 < b1 < bn.
Usually, there are common nodes to many paths. In this
manner, they are not duplicated.

As described previously, at each new collision, we make
the following operations : Let m be the bucket undergoing
the split, M the next bucket to allocate, K and I correspond
the usual parameters. We first search the path of the trie
containing the first I digits. Let c'0c'1...c'i be this path.
Then, we insert the sequence c'i+1 c'i+2....c'k such as c'i+1
would be a son of c'i, c'i+2 a son of c'i+1, and so forth. To
respect the order of nodes at each level, the son must be
inserted at its appropriate position among this brothers.
Then, we replace the old bucket m by M. Finally, we
generate (K-I-1) nil nodes. On the average, an internal node
and an external one are created by collision. As seen
previously.

Key search is performed as follows: we start by the most
left path. Then we go over all the internal nodes, i.e., until
an external node is encountered. The maximal key of this
bucket is thus d1d2...dn::..: where d1, d2, ...dn are the
nodes of the path. Either the searched key C is less or equal
to the maximal key and the concerned bucket is found, or
the encountered bucket is not the right one. In the latter
case, we take the following external node and the maximal
key becomes d1d2...dn-1::..:. Then, we repeat the same
steps. If there are no external node and the concerned
bucket is not found, we go to the path immediately to right,
and so forth. The traversal is stopped when the bucket is
found.

Sequential search is easily performed. It consist in
reading the pointers respectively in the linear
representation.

The PP-LR representations are about two times more
compact. The same buffer in core, holds then about two
times larger files. But the algorithms are more complex
and need more processing time.

4.2 Partial expansion principle (PE)
In the basic access methods (B-tree, hashing), the

overloading bucket is immediately split in two buckets
implying a local reorganization. This may involve a
substantial deterioration of the load factor. In order to
avoid this, several propositions have been made. We can
cite as example, virtual hashing [11,12] in where a splitting
is made in case the load factor attains a predefined
threshold (a) This allows to control the load factor of the
file and then to keep a good loading [11]. In B-trees, we
can cite The B*-trees proposed by Knuth [8] where a
bucket is split only when the brother buckets are full. In
this situation there is a splitting of two buckets in to three.
This warrants a minimal load factor of 66% and in average
it is about 81% [8]. These propositions have been
generalized by the end of 1980’s and have introduced a
new concept called : partial expansion (PE). PE consists
in gradually increasing the size of the overloading bucket
instead of splitting it immediately. The splitting is made
when a maximal size is reached. Each expansion is called a

J1

 2

 1

 0

14

13

12

11

10

09
 0 1 2

3 4 5

 6 7 8
1 6

1 3

1 0

 2

 1

 1

 1

 0

 1

 12

 1

 9

 1

 0 1 2 3 4 j2

 0 2 1

 T1 : trie relative to
axes j1

 0 4 3

 T2 : trie relative to
axes j2

 1 2

 B1

Index arrays

 B2

In this example, the data file is composed by 15 buckets
which are clustered in 15 segments. The number of
partial expansions r=3. The keys dimension d=2.
 The address computation of an element F[j1,j2]
(example F[1,3]) is achieved as follows:
1. Find a segment which may contains the bucket’s

record. Its base addresses is giving by:
Max(B1[j1,1],B2[j2,2]).

2. Compute the exact address of the elements . For our
example f(1,3)=B2[3,2]+B2[3,1]*j1=9+1*1=10

Fig 2: The MCTHE Principe

4

partial expansion. The process which allows a bucket to
grow from its minimal size until its splitting (maximal size)
is called a full expansion. We call a growth sequence of a
bucket the sequence s0,s1,... sr-1 of r (r :number of steps
or expansions) of different bucket sizes with s0<s1<... <sr-
1. A growth sequence is valid if 2s0>sr-1.in practice, we
choose the sequence : rb,(r+1)b,.... (2r-1)b, r being the
number of expansions and b the size bucket.

An analysis of performances on B+-trees with the partial
expansion [16] have shown that :

- With 2 partial expansions we have a load factor 81 % ,
improving thus of 10 % the one of B+-trees. The cost of the
insertion is practically the same for the B+-trees and BE-
trees.

- the BE-trees with 2 partial expansions performs
practically the same load factor than the one of B*-trees
[8] but with an access time significantly lower down.

4.3 Algorithm of MCTHE
Insertion
When inserting a new key K=(k1,k2..kj...Kd), we search

first the bucket C which must containing K. We have two
cases Case 1 : bucket C is not full, the record is inserted in
C. Case 2: bucket C is full. Let tc=ib (i :1..2r-1), the
size of bucket C. we have two situations :

1. i<2r-1 : we proceed with a partial expansion as
follows: the bucket size is augmented with one unit, ie. it
passes from ib to (i+1)b, the record is inserted

2. i=2r-1 : the expansion is full, bucket C is split
implying an extension of the file as follows :

We choose an axis j (cyclically by example), on which
the multidimensional array (the file) extends. The leave
node Ij, the result of the application of the attribute value kj
on trie Tj, is split in to two nodes Ij et mj. Then, we must
rehash the keys of all the buckets whose have Ij as value to
jth coordinate (this group of buckets forms the segment Ij)
in order to know the buckets which will stay in the segment
(Ij) and the ones which will be reloaded in the new segment
(mj). If during the rehashing of a key, we reach on a nil
node (newly generated'), this will be replaced by the next
free index in the axis J(mj+1 ,...) and a new segment is
added at the end of the file.

Searching
The exact match query is very simple. For each value vj,

we apply trie Tj (hashing function) to obtain the index ij. If
one of the indexes is NIL, the searching algorithm is
stopped with failure. Otherwise, the bucket which could
contain the record is given by the application of the
projection mapping on the d-tuples of indexes.

In order to respond to a partial match query, we proceed
as follows :

1. We apply on each specified value Vj(j=1..q) the
corresponding trie Tj to obtain a d-tuples of the form
<*,...,i1,*...iq,..*> (1), where (*)denotes an index related to
a non specified attribute in the query.

2. We compute the addresses of buckets susceptible to
contain the searched records by applying the projection
function on the d-tuples (1), where (*) is replaced by the
values, results of traversals of tries associated to the
unknown attributes.

In a region query we specify for each key attribute kj a
whole interval delimited by two values : Infj and Supj. In
order to respond to this query we proceed as follows :

1. To each attribute kj, we apply the corresponding trie
Tj (mapping function) on the two values

Infj and Supj.
2. sweep each attribute kj between Infj and Supj.
Notice here that the traversal of tries is very simple

because the nodes are stored in inorder.
5. Performances
The study of performance on the proposed scheme

concerns essentially the load factor, the access cost of
insertion, deletion and query operations. It is based mainly
on the simulation. So, several parameters are considered :
bucket capacity (b), the number of partial expansions (R),
the dimension (d) etc. We have observed the behavior of
the method through random insertions.

5.1 Load Factor
It is about to observing the changes in the behavior of

the load factor according to the maximal number of keys of
a bucket (b), the dimension of keys (d) and the number of
partial expansions, let r. The test of the figure (fig 3) is
obtained by the insertion of 400,000 records in a file with
the following parameters maximal size of a bucket b=75;
number of partial expansion r=3;the dimension d=2.

The main results obtained are :
1. The application of the partial expansion principle

involves broadly the load factor It reaches easily the 70 %
2. the bucket size (b) have not a great influence on the

behavior of the load factor.
3. the load factor for MCTHE is less sensible when the

dimension increases.
4. For the sorted insertions the load factor of the file data

is weaker compared to random insertions
5.2 Operations
Insertion
The tests we have obtained allow to establish the

following results :
1. The access cost of an insertion operation is known in

advance. It is practically stable and about 2 when the
partial expansions principle is not applied, otherwise it is
between 3 and 4.

2. The access cost is not according to the number of
insertions.

3. The application of the partial expansion principle has
not a great influence on the access cost of insertions

0

0,2

0,4

0,6

0,8

1

50
0

21
50

0

42
50

0

63
50

0

84
50

0

10
55

0

12
65

0

14
75

0

16
85

0

18
95

0

21
05

0

23
15

0

25
25

0

27
35

0

29
45

0

31
55

0

33
65

0

35
75

0

37
85

0

39
95

0

Fig 3 : Variations of the load factor

5

 Searching
The access cost of an exact match query (Fig.5-A) is the

number of disk accesses necessary to find one or several
records responding to a condition. It is practically equal
to 1 if the we do not apply the partial expansion principle.
It is otherwise near of (r/2) (r being the number of partial
expansion applied. Note finally that this cost is neither
influenced by the dimension d nor by the number of
record present in the file.

 Fig 5.A: Variations of the access cost of exact

match query
The cost in access number of a partial match query

(Fig.5-B) where we specify q attribute values on the d
indexes, is in average r/2 access to obtain the first bucket
verifying the query. The other buckets are obtained
between 1 and r disk accesses.

 Fig 5.B: Variations of the access cost of partial
match query

The access cost of query (Fig.5-C) is goes accordingly
with the number of buckets verifying the query. It is
between 1 and r disk access for each bucket visited.

 Fig 5.C: Variations of the access cost of a

region query

6. Comparison with MTH
In this section, we compare the performances of MCTHE

with those of MTH[19]. We make this essentially by
simulation.

Load factor
It is certain that the application of the partial expansion

principle involves the performances of the load factor.[16].
In order to verify this, we have inserted 80 000 records in a
file with size bucket equal to b=75 records by using MTH,
then MCTHE for the following various values of
r=1,r=2,r=3.

Notice also that :
1. the performances in load factor for MCTHE with r=1

are practically equal to those of MTH 40 % for the both
methods. This is due to the fact that the two methods use
the same technique to solve the collisions

2. the application of the partial expansion principle
involves broadly the performances in load factor. Morose ,
we can attain 70 % while it is under 38 for MTH.

Insertion
For MTH an insertion may cost 2 accesses disk if this it

does not imply a splitting. Otherwise, more the blocks size
is important, more the access cost is great. The tests we
have realized show that the access cost of an insertion is in
average equal to 2.

For MCTHE, the insertion cost is equal to 2 disk
accesses if no expansion (partial or full) is made. It is of 3
disk accesses when a partial expansion is accomplished,
while it is according to the block size added in the case of
full expansion The simulation tests realized show that the
number of disk access needed for an insertion operation is
near of 3 in average .

 Notice that MTH and MCTHE offers both promising
access performances for the insertion operation

Searching
 One of the advantage of hashing access methods is that

offer very good access performances for the search
operations broadly best than any other kinds of methods.

Notes :
• for an exact match query : in average less than one

disk access is necessary for a record search in a
MTH file or MCTHE file without expansion ,
However, for MCTHE the average access cost of
search operation is near of r/2 (r being the number
of partial expansion applied, generally r<4)

• partial and region query : the simulation tests show
that the two methods (MTH, MCTHE) offer
practically the same access performances.

Memory space
In MTH, tries are implemented by using the standard

representation where each trie is a list of internal nodes .
At each collision one of the (d) tries is extended by one
internal node in average. We may use 6 bytes to represent
an internal node (2 bytes for UP, 2 bytes for LP, 1 for DV
and 1 for DN). If M denotes the number of extensions
made on an axis Ai and F the number of internal NIL in
trie Ti then the size TAi of trie Ti is given by :

TAi =6(M+F).

Fig 4: Variations of The access cost of an insertion

2 , 7

2 , 9

3 , 1

3 , 3

3 , 5

5,
E+

02

2,
E+

04

4,
E+

04

6,
E+

04

8,
E+

04

1,
E+

05

1,
E+

05

1,
E+

05

2,
E+

05

2,
E+

05

2,
E+

05

2,
E+

05

3,
E+

05

3,
E+

05

3,
E+

05

3,
E+

05

3,
E+

05

4,
E+

05

4,
E+

05

4,
E+

05

0

0 ,5

1

1 ,5

2

5,
E+

01

6,
E+

03

1,
E+

04

2,
E+

04

2,
E+

04

3,
E+

04

3,
E+

04

4,
E+

04

4,
E+

04

5,
E+

04

6,
E+

04

6,
E+

04

7,
E+

04

7,
E+

04

8,
E+

04

0
10
20
30
40

1,
E+

03

7,
E+

03

1,
E+

04

2,
E+

04

3,
E+

04

3,
E+

04

4,
E+

04

4,
E+

04

5,
E+

04

6,
E+

04

6,
E+

04

7,
E+

04

7,
E+

04

8,
E+

04

0

5

10

15

20

25

1,
E+

03
4,

E+
03

7,
E+

03
1,

E+
04

1,
E+

04

2,
E+

04
2,

E+
04

2,
E+

04
3,

E+
04

3,
E+

04

3,
E+

04
3,

E+
04

4,
E+

04
4,

E+
04

4,
E+

04
5,

E+
04

5,
E+

04

5,
E+

04
6,

E+
04

6,
E+

04
6,

E+
04

6,
E+

04
7,

E+
04

7,
E+

04

7,
E+

04
8,

E+
04

8,
E+

04

6

Thus for the d tries we have

Size of occupied memory =).(6.TAi
1

FMd
d

i
+≈∑

=

In MCTHE we have used the PP-LR representation PP-
LR to implement the tries. In this representation, a trie is a
sequence of internal and external nodes An internal node
takes up 1 byte while an external one two bytes. At each
collision in average an internal node and an external one
are added to the trie. With the same suppositions, the size
TAi of a trie Ti is TAi =3(M+F). for the D tries we have

 Size of occupied memory =).(3.
1
TAi FMd

d

i
+≈∑

=

We may notice for MCTHE the increase of file size by a
2-factor with the same memory space used in MTH.

Time of tries traversal
 MTH : With the supposition that the tries are balanced,

what is the case when the records insertion are random,
searching is in O(Log2 N), (N being the number of nodes
in the trie). Thus, the traversal of d tries is in d(O(Log2 N)

MCTHE : the traversal of trie in PP-LR representation is
made path by path. Therefor, to attain an external node, we
visit in average N/2 nodes ((N being the number of nodes
in the trie).). Th search algorithm is then in O(N), and the
traversal of the d tries is in d(O(N)).

To sum up, we can see that the time consumed by the
traversal of the trie realized by MTH is better than the one
realized MCTHE. This have not a great importance
because the tries are present in memory.

8. Conclusion
MCTHE is a new scheme of file structures intended to

multidimensional dynamic files. It consists on keeping in
RAM d tries under their compact form and delaying the
buckets splitting by using the partial expansion principle.
The performance analysis of MCTHE show that:
1. The tries compact form allows to double the file size
for the same memory space used by MTH.
2. The load factor is between 70-80 %, what is broadly
better than the one of MTH and even than the most
concurrent methods such as ABMD structure.
3. The insertion access cost varies between 3 and 4 access
disk accesses.
4. The exact match query access cost varies between 0
and r accesses r being the number of partial expansions.
All this place the methods among the most efficient known
until now. Nevertheless, we think that we may involve this
new scheme by controlling the load factor , or by the
balancing of tries as madein [19], or yet by envisaging an
extension to distributed environment.

9. References
 [1] : J.L.benthty. « Multidimensional binary search trees

in database applications ».IEEE Trans on software
engineering SE5(4) :333-340, July 1979.

 [2] :R.Bayer, E. McCreigth. « Organization and
maintenance of large ordered indexes »

acta informatica 1(3) :173-189,1972

[3] : M.Ouksel, P.Scheuermann « Multidimensional B-
tree for associalive searching in data base systems »
INFORM systems Vol 7,2 1982

[4] :G.Evangelidis, B.Salzberg. «using Holey Brick tree
for spatial data in general purpose DBMSs ». IEEE
database Engineering Bulletin 16(3) : 34-39, Sep 1993.

[5]: M.Ouksel, P.Scheuermann «Multidimensional B-
tree: analysis of dynamic behavior» BIT21 401-418,
1981

[6] : D.Zegour «Extensions du hachage digital : hachage
multiniveaux hachage digital avec repr'sentation
séquentielles » thèse de doctorat, université' de Paris
IX Dauphine 1988

 [7] : W.K.Hidouci - D.E Zegour «Comparisons of B-
trees and trie hashing for multidimensional access »
4TH. Maghrebian Conf. On Software Engineering and
artificial intelligence. Algiers'96.

[8] D.E Knuth «The Art of Computer Programming »
Vol3 : Sorting and searching, Addison-Wesley,1993.

[9]. : P.Larson «Dynamic Hashing » BIT 18 (1978),
[10] : P..Larson «Dynamic Hash Tables »

Communications of ACM 4-1988 volume 31.
[11]: W.Litwin « Virtual hashing a dynamically changing

hashing » VLDB 80, ACM, Sep 1978 , 517-523
[12] : W.Litwin «Hachage Virtuel » thèse se de doctorat

d'état, Paris VI,1979.
[13] : W.Litwin «Trie Hashing » SIGMOD 81, ACM,

may 1981, 19-29.
[14] W.Litwin «Trie hashing : Further Properties and

Performances » Int.Conf. on Foundation of Data
Organization. Kyoto, May 1985, Plenum press.

[15]:Nievergelt,Hinterberger,Sevci « the grid file : an
adaptable symmetric multikey file structure »
ACM Trans data base sys 9 (1) : 38-71 march 1984.

 [16] : A.Ricardo,Baeza-Yates,P.Larson « Performance of
B+-trees with partial expansion » IEEE Tran. On
knowledege and data engineering Vol 1 No 2 june 89

 [17] : W. Bukhard : « interpolation –based index
Maintenance ». ACM Trans On knowledege and data
engineering Vol 3 1983.

 [18]: E.J. otoo: «A multidimensional digital hashing
scheme for files with composite keys »

 SIGMOD vol 14,4(Dec 1985)
[19] E.J. otoo: « Multikey trie for scientific and statistical

databases » CODATA (North Holland)1987
[20] :J.T.Robinson «the K-D-B-trees : a search structure

for large multidimensional dynamic indexes »
In proceedings of ACM-SIGMOD annual conf on
management of data, pp 10-18 New York, April 1981

 [21] :T.Sellis,N.Roussopoulus,C.Faloutos « The R+-tree
:dynamic index for multidimensional objects » . In
international conf on very large database page 1-24,
Brighten, England,1987

 [22] : M. Tamminen «The EXELL method for efficient
geometric access to data » Acta polytechnica
SCANDINAVIA , Mathematics and Computing
Science series N 34, Helsinki 1981.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

